

Appendix I: Noise Impact Assessment

NOISE IMPACT ASSESSMENT

I-26 Widening MM 187-194

Berkeley County,

South Carolina

Prepared For:

Mead and Hunt, Inc. 878 South Lake Drive, Lexington SC 29072

Prepared By:

Three Oaks Engineering, Inc. 1022 State Street, Building 2 Cayce, SC 29033

August 2019

EXECUTIVE SUMMARY

The following noise assessment has been prepared in compliance with Title 23 of the Code of Federal Regulations, Part 772 (23 CFR Part 772), and will be provided by South Carolina Department of Transportation (SCDOT) to local officials in an attempt to prevent future impacts from traffic noise.

The proposed project is located in Berkeley County, South Carolina. The project consists of widening Interstate 26 (I-26) for approximately 6.6 miles from MM 187 – MM 194. The improvements involve adding a travel lane in each direction of I-26 toward the existing median, median clearing and cable guardrail installation, improving the Exit 187 interchange and ramps, replacing the I-26 mainline dual bridges over Cypress Swamp, potential replacement of Cypress Campground Road bridge over I-26, and drainage improvements.

The TNM 2.5 Noise Model was used to analyze the existing condition (2018) and the 2043 design year No-build and a Build Alternative based on preliminary design. Field measurements were performed to establish a sound level baseline for which to compare possible sound level increases that may result from the proposed action. Traffic data was derived from the traffic study entitled "Traffic Data," prepared by Stantec in June 2019.

Berkeley County was contacted to obtain approved building permits within the noise study area. The Berkeley County Planning & Zoning Department provided no approved building permits for new structures within the noise study area. It has been noted that a building permit has been submitted and a site plan approval is pending for a church adjacent to I-26 and Cypress Campground Road. Although a site plan is not available, a noise contour was used to create an area within the approximate property boundary that would potentially exceed 66dBA. This approximate area will be provided to Berkeley County for their consideration.

The modeling results indicated that fourteen (14) residential receivers would have noise levels that approach or exceed the NAC criteria for its respective land use for Build Alternatives 1 and 3. Alternative 2 would have fifteen (15) residential receivers that would have noise levels that approach or exceed the NAC criteria for its respective land use. Alternative 1 would potentially require the relocation of one (1) residential receiver, while Alternative 2 would potentially require the relocation of two (2) residential receivers. Noise abatement was therefore considered for the proposed project. As a result of the mitigation analysis, there were no feasible and reasonable solutions to mitigate for the noise according to the SCDOT Traffic Noise Abatement Policy.

TABLE OF CONTENTS

١.	INTRO	DUCTION AND PROJECT DESCRIPTION	1
	А.	Proposed Project Description, Existing Facility and Purposes and Need	1
	В.	Existing Land Uses	1
11.	ANALY	SIS METHODOLOGY	6
	Α.	Model Used and Assumptions	6
	В.	Traffic Data	6
	C.	Receiver Locations	6
	D.	Field Measurements	6
	Ε.	Model Validation	8
III.	TRAFF	IC NOISE IMPACTS	20
	А.	Modeled and/or Measured Existing Year Noise Levels	20
	В.	Modeled Design Year (2043) No-Build Alternative Noise Levels	20
	C.	Modeled Design Year (2043) Build Alternative 1 Noise Levels	20
	D.	Modeled Design Year (2043) Build Alternative 2 Noise Levels	20
	Ε.	Modeled Design Year (2043) Build Alternative 3 Noise Levels	20
IV.	FEASIE	BLE AND RESONABLE CONSIDERATION OF ABATEMENT	23
	А.	Acquisition of Right-of-Way	23
	В.	Traffic Management	23
	C.	Alteration of Horizontal and Vertical Alignments	23
	D.	Acquisition of real property or interests therein (predominately unimp	roved
		property) to serve as a buffer zone to preempt development	23
	Ε.	Noise insulation of public use or nonprofit institutional structures	23
	F.	Noise Barriers	23
V.	FINDIN	IGS AND RECOMMENDATIONS	27
VI.	CONST	FRUCTION NOISE	27
VII.	COORI	DINATION WITH LOCAL OFFICIALS	

LIST OF TABLES

Table 1: 23 CFR Part 772, Table 1 Noise Abatement Criteria (NAC) Hourly A Weighted SouLevel in Decibels (dB(A))	
Table 2: Field Data Count and Classification Summary	.8
Table 3: Comparison of Measured Leq to TNM 2.5 Modeled Leq	.8
Table 4: Existing and Design Year Sound Levels	.21
Table 5: Barrier Descriptions	.26
Table 6: Barrier Evaluation Summary	.26
Table 7: Leq Noise Level (dBA) at 50 Feet for Construction Equipment	.28

Table 8: Contour	r Distances (dBA)	 	2	9

LIST OF FIGURES

Figure 1: Project Location	2
Figure 2: Typical Sections	3
Figure 3: Approximate Church Property Boundary	5
Figure 4: Build 2043 Noise Impacts	9

APPENDICES

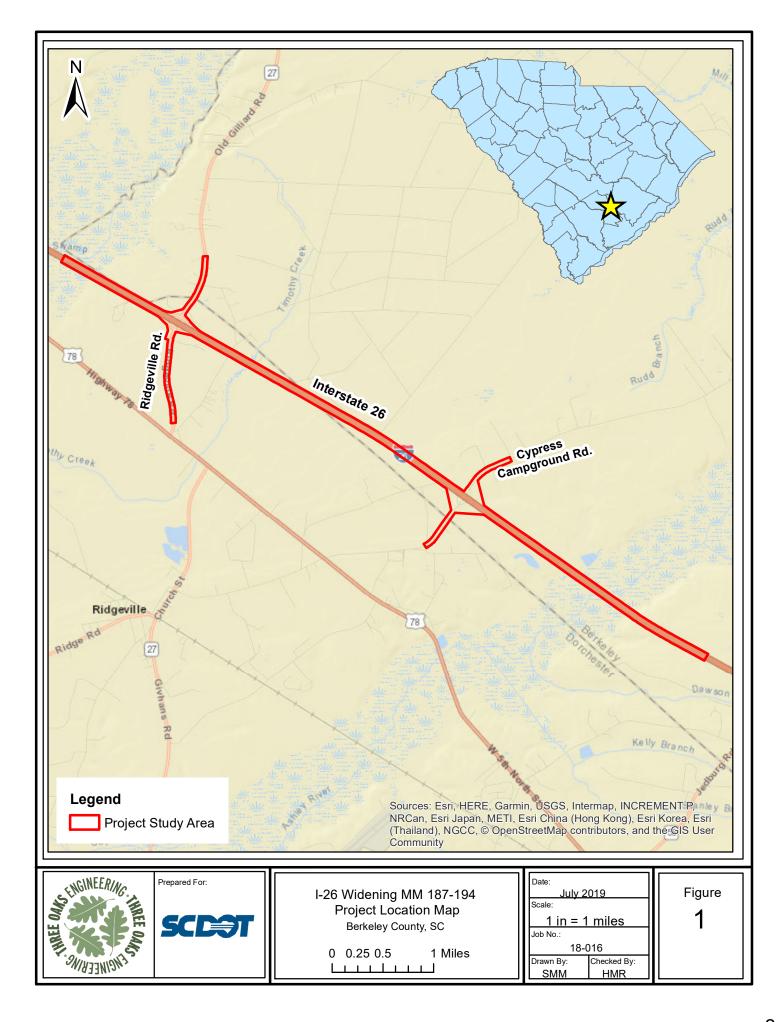
Appendix A:	Traffic Data	30
Appendix B:	Field Measurements	33
Appendix C:	SCDOT's Feasible and Reasonable Worksheets	40

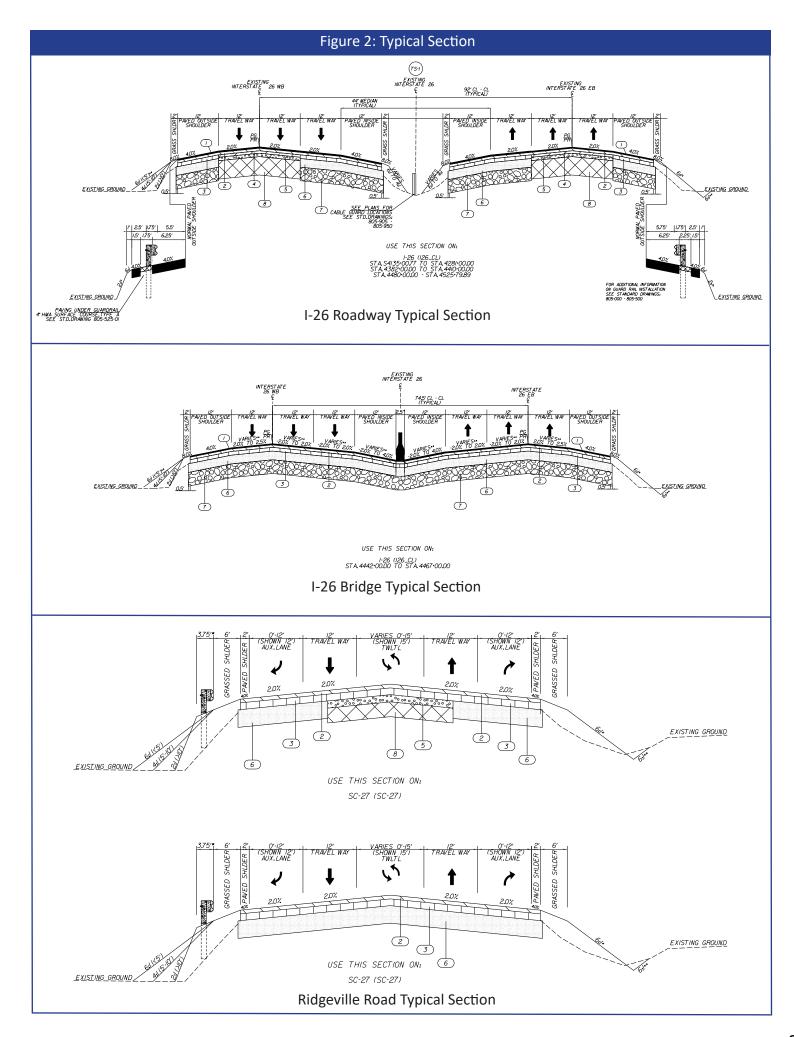
***Existing, No-Build, and Build TNM Files & Results provided electronically.

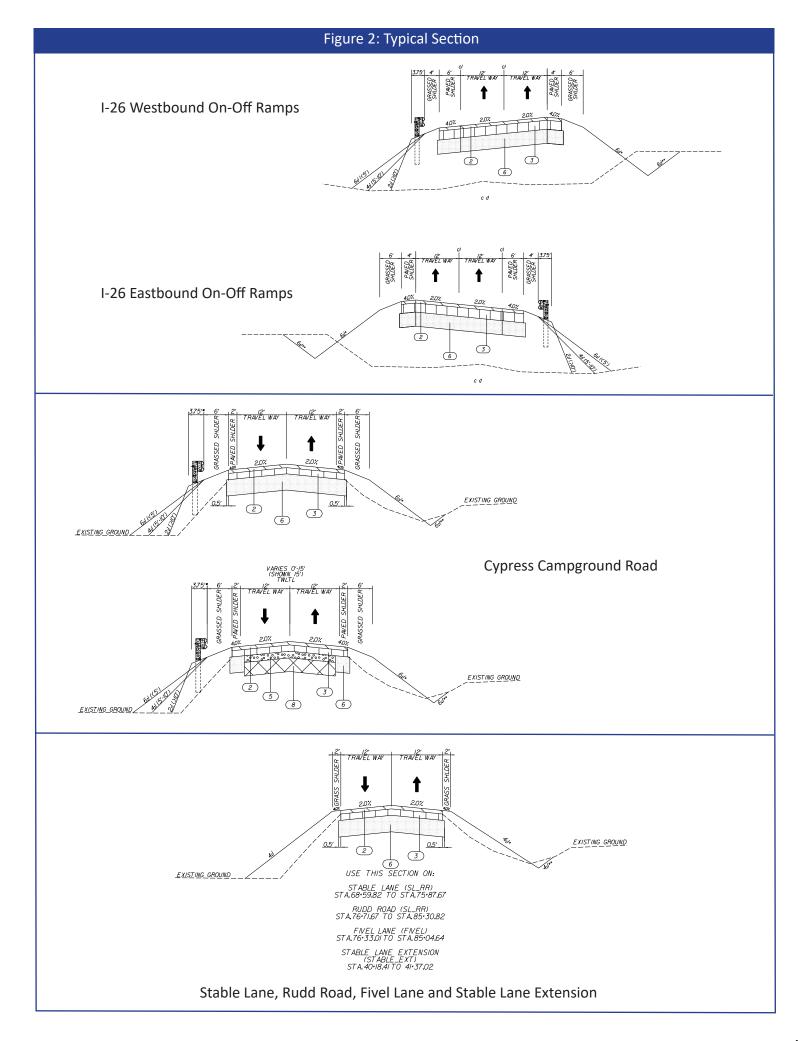
I. INTRODUCTION AND PROJECT DESCRIPTION

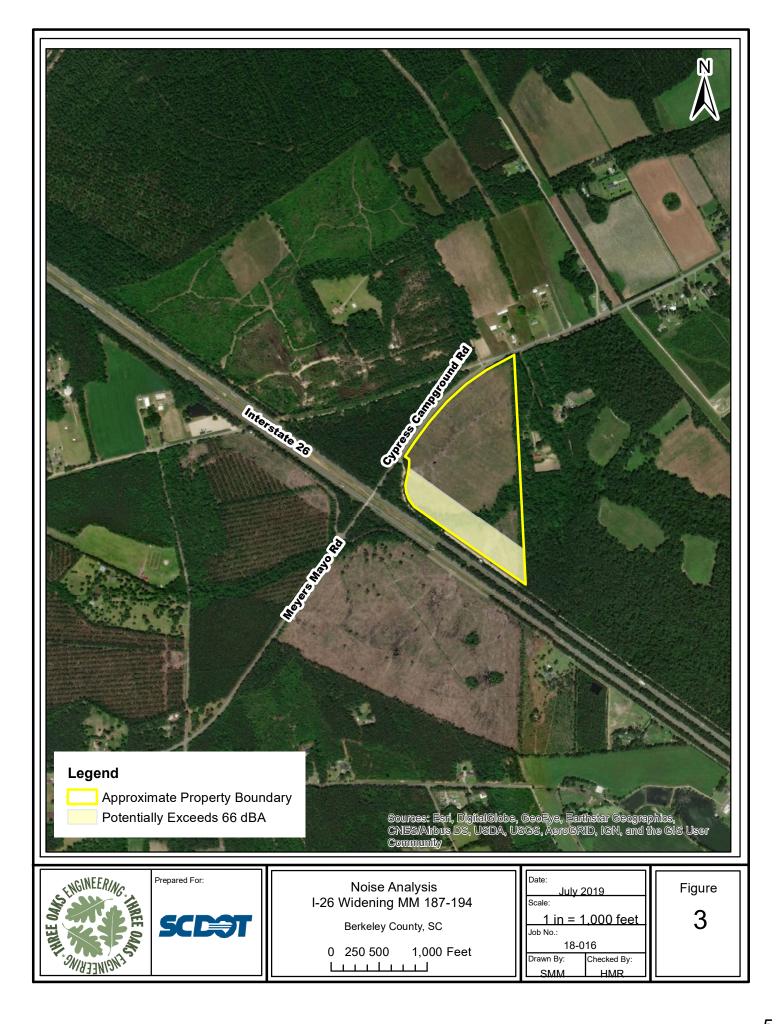
The following noise assessment has been prepared in compliance with Title 23 of the Code of Federal Regulations, Part 772 (23 CFR Part 772), and will be provided by South Carolina Department of Transportation (SCDOT) to local officials in an attempt to prevent future impacts from traffic noise. The current SCDOT Traffic Noise Abatement Policy, dated September 2014, was followed to analyze the potential noise impacts and mitigation as necessary.

A. Proposed Project Description and Existing Facility


This project consists of widening Interstate 26 (I-26) for approximately 6.6 miles from MM 187 – MM 194, refer to Figure 1. The improvements involve adding a travel lane in each direction of I-26 toward the existing median, median clearing and cable guardrail installation, improving the Exit 187 interchange and ramps, replacing the I-26 mainline dual bridges over Cypress Swamp, replacing Cypress Campground Road bridge over I-26, and drainage improvements (Figure 2). There are three (3) proposed Build Alternatives for improvements to the Exit 187 interchange and ramps. Designs for Alternatives 1-3 are a rural diamond interchange, a partial cloverleaf interchange, or a diamond round about, respectively. Based on preliminary evaluation Alternative 3 is the preferred alternative.


B. Existing Land Uses


Land use adjacent to I-26 is mostly comprised of undeveloped land with some residential housing. Land use along Ridgeville Road North of I-26 is a mixture of residential and commercial, while South of I-26 is mostly undeveloped land with minimal residential housing. Cypress Campground Road is mostly undeveloped land with a few residential housings.


The proposed project is located within Berkeley County, South Carolina. The Berkeley County Planning & Zoning Department provided no approved building permits for new structures within the noise study area.

It has been noted that a building permit has been submitted and a site plan approval is pending for a church adjacent to I-26 and Cypress Campground Road. Although a site plan is not available, a noise contour was used to create an area within the approximate property boundary that would potentially exceed 66dBA. This approximate area will be provided to Berkeley County for their consideration. (Figure 3).

II. ANALYSIS METHODOLOGY

A. Model Used and Assumptions

Federal Highway Administration (FHWA) Traffic Noise Model (TNM 2.5) was used to derive existing and future noise levels. Applicable model features, such as shoulders were added to the analysis to provide accurate sound level results.

B. Traffic Data

Traffic data (and design files) for the proposed project were provided by Stantec. The traffic report included the estimated Average Annual Daily Traffic (AADT) for the existing year (2018) and the design year (2043) that included fleet mix percentages, directional splits, and peak hour. A speed limit of 70 miles per hour (mph) was used for I-26. Ridgeville Road was modeled at 45 and the ramps were modeled at 35 mph. The Volvo interchange was modeled at 45 mph and Cypress Campground Road was modeled at 55 mph. (Appendix A).

C. Receiver Locations

Sensitive receivers and/or land use types were first identified using aerial photography and street level views from http://maps.google.com, then field verified. Receivers were modeled in areas of frequent human use. Exterior usage receiver categories that are potentially impacted by the proposed project include FHWA-developed Noise Abatement Criteria (NAC) categories B, C, and E (refer to Table 1). Figure 3 shows all the receptors evaluated for this project.

D. Field Measurements

Ambient noise field measurements were taken at three (3) different locations along I-26, shown in Figure 3. Noise measurements were taken on Thursday, July 19, 2018 during AM peak traffic and Thursday, July 26, 2018 during PM peak traffic. These were performed in accordance with the FHWA publication "Measurement of Highwayrelated Noise."

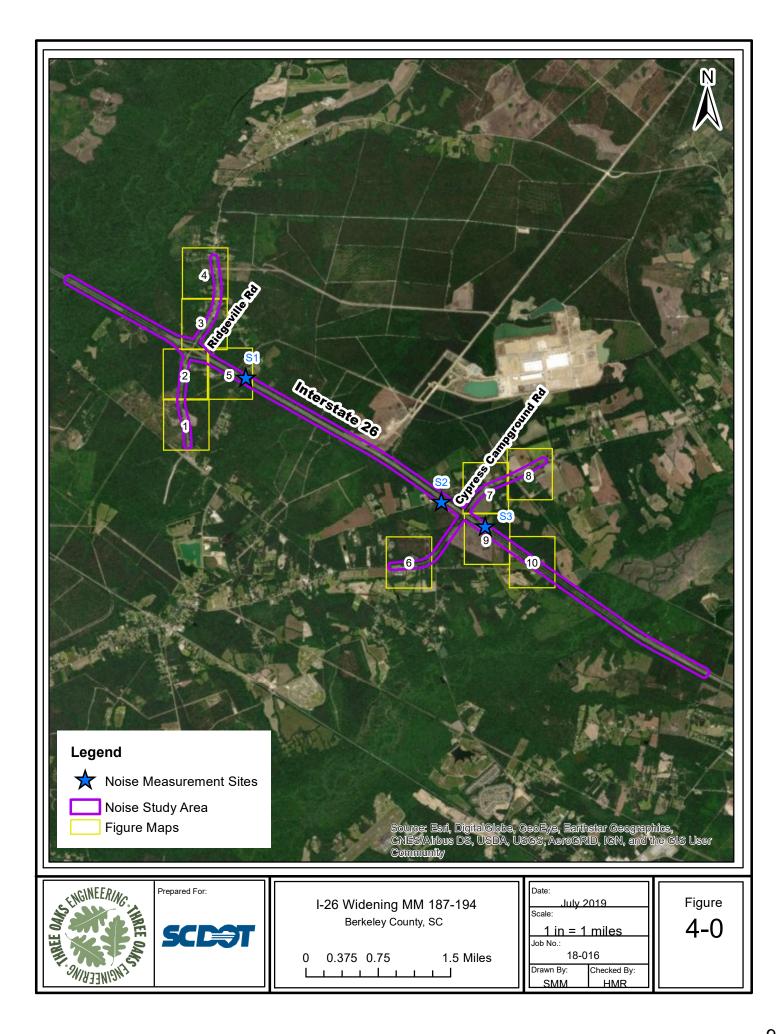
Vehicles were counted and the type of vehicles were noted during the field measurements. Meteorological conditions and local features were noted for each site. Table 2 summarizes the information for the ambient noise field measurements and Appendix B contains the field measurement data sheets. At Site 3 the eastbound traffic was not visible during measurements due to dense tree coverage in the I-26 median. Several different locations were evaluated for a third noise measurement site, but no other areas were identified as a suitable substitute with visible eastbound traffic. Based on the vehicle counts for the westbound traffic being higher than the eastbound traffic on Site 1 and Site 2, the westbound traffic counts were used for both directions at Site 3 to be conservative.

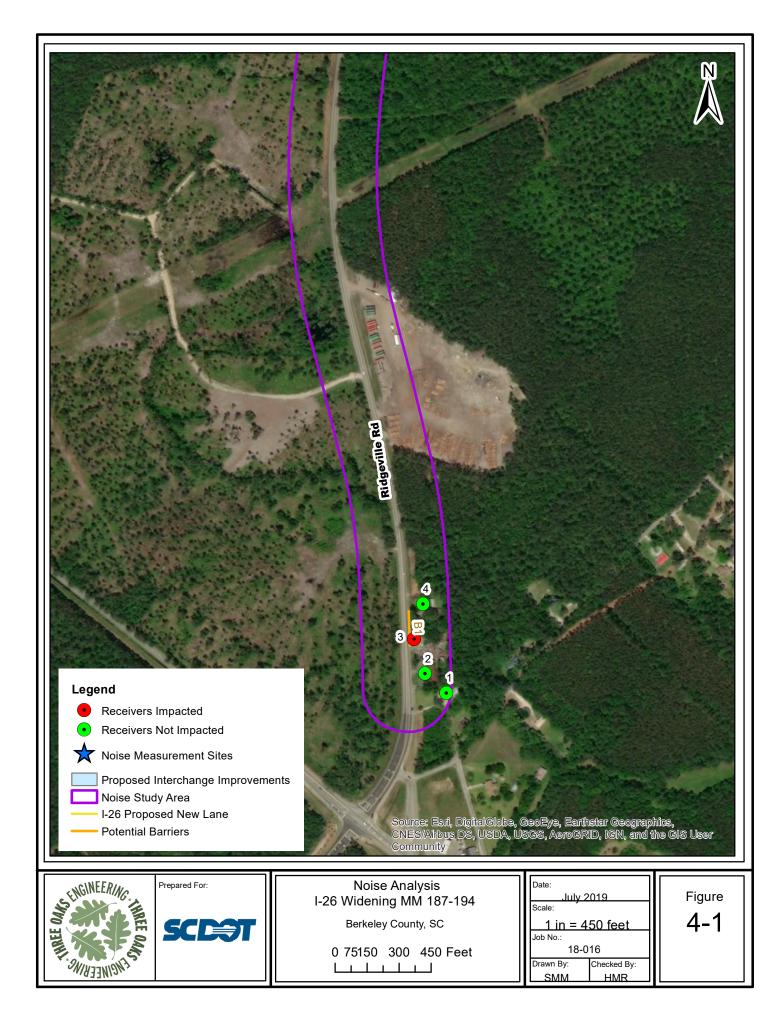
Table 1:	23 CFR Part 7	72, Table 1 No		nt Criteria (NAC) Hourly A Weighted Sound Level in s (dB(A))
Activity Category	Leq (h) ^{\1,2\}	L10 (h) ^{\1,2\}	Evaluation Location	Description of Activity Category
А	57	60	Exterior	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.
B ^{\3\}	67	70	Exterior	Residential.
C ^{/3/}	67	70	Exterior	Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.
D	52	55	Interior	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.
E /3/	72	75	Exterior	Hotels, motels, offices, restaurants/bars, and other developed lands, properties or activities not included in A-D or F.
F				Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing.
G	3 CFR Part 772			Undeveloped lands that are not permitted.

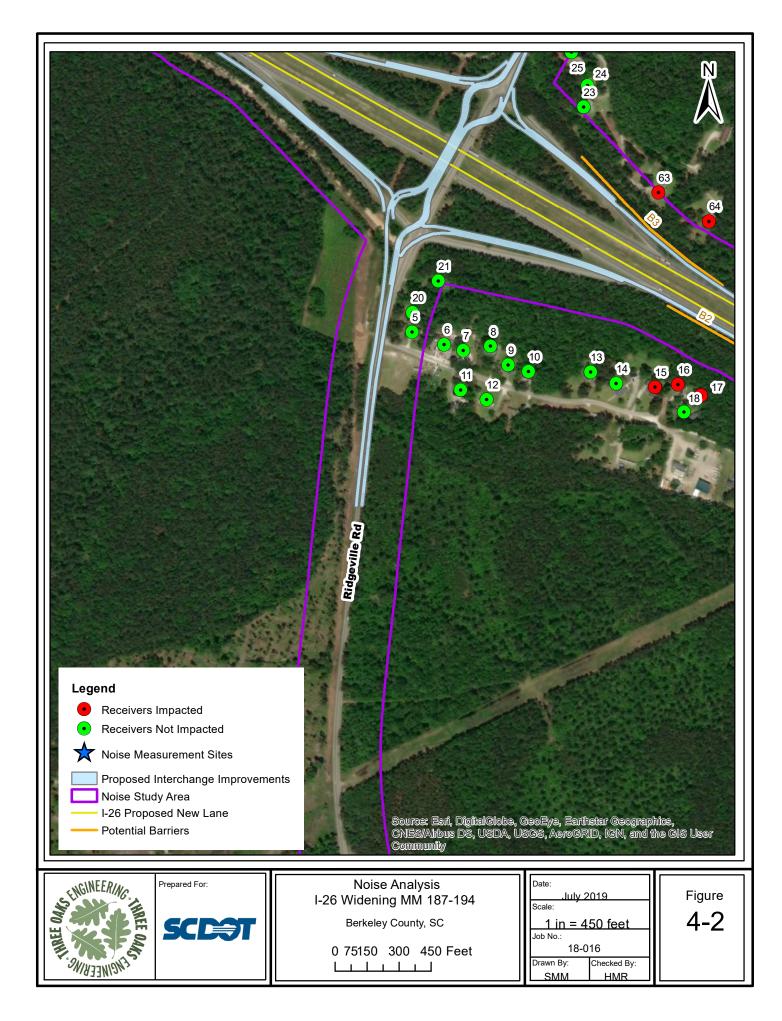
SOURCE: 23 CFR Part 772

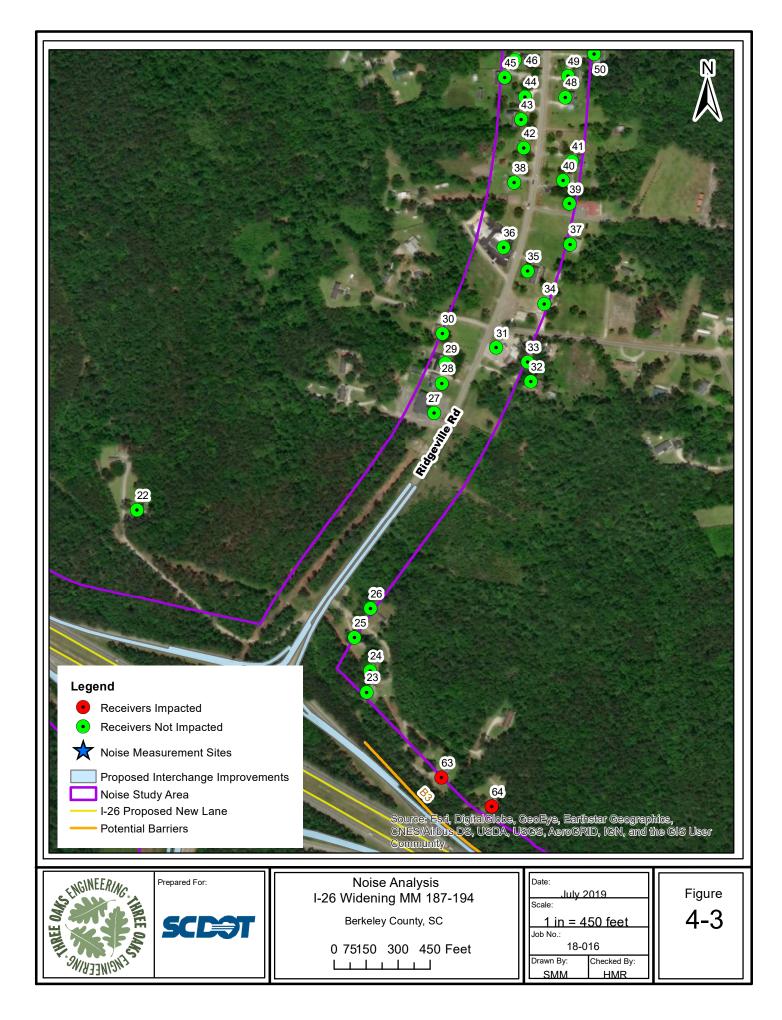
 $1 \in Leq(h)$ or L10(h) (but not both) may be used on a project.

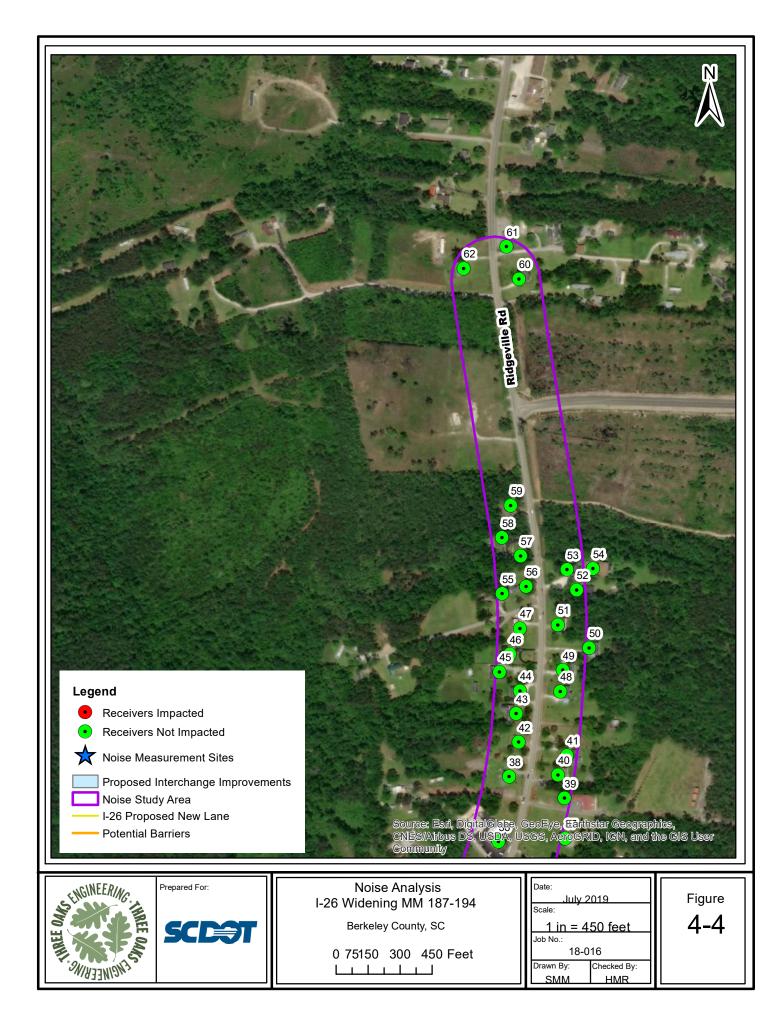
\2\ The Leq(h) and L10(h) Activity Criteria values are for impact determination only and are not design standards for noise abatement measures.

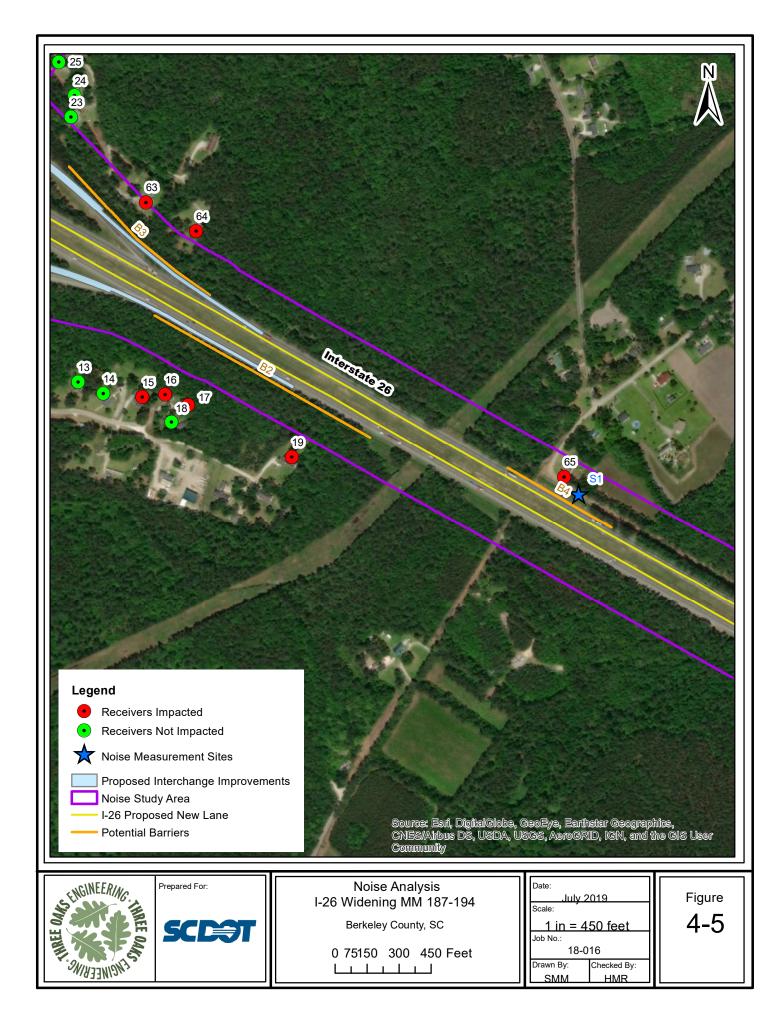

\3\ Includes undeveloped lands permitted for this activity category.

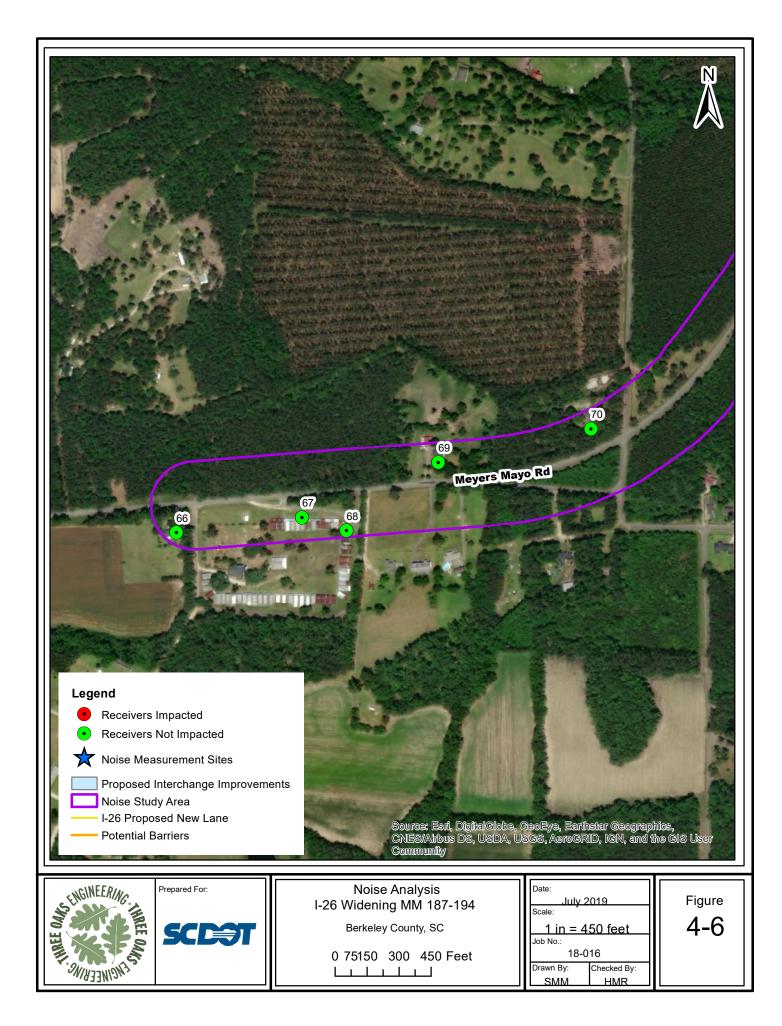

		Time	me Traffic Counts Data									
Location	Date	Period		E	astbour	nd			v	Vestbou	nd	
		(min)	HT	MT	Auto	Bus	MC	HT	МТ	Auto	Bus	мс
Site #1	7/19/2018	7:35 AM – 7:50 AM	63	23	293	0	0	70	29	301	0	4
Site #1	7/26/2018	5:17 PM – 5:32 PM	36	9	413	2	0	48	13	436	2	0
Site #2	7/19/2018	8:17 AM – 8:32 AM	91	11	286	0	0	68	12	397	0	0
Site #2	7/26/2018	4:20 PM – 4:35 PM	48	10	388	1	0	58	8	390	0	0
Site #3	7/19/2018	8:49 AM – 9:04 AM	-	-	-	-	-	95	22	329	0	0
Site #3	7/26/2018	4:45 PM – 5:00 PM	-	-	-	-	-	55	11	365	0	0
Notes:	HT - Heavy Trucks	MC – Motoro	cycles		-	-	-					

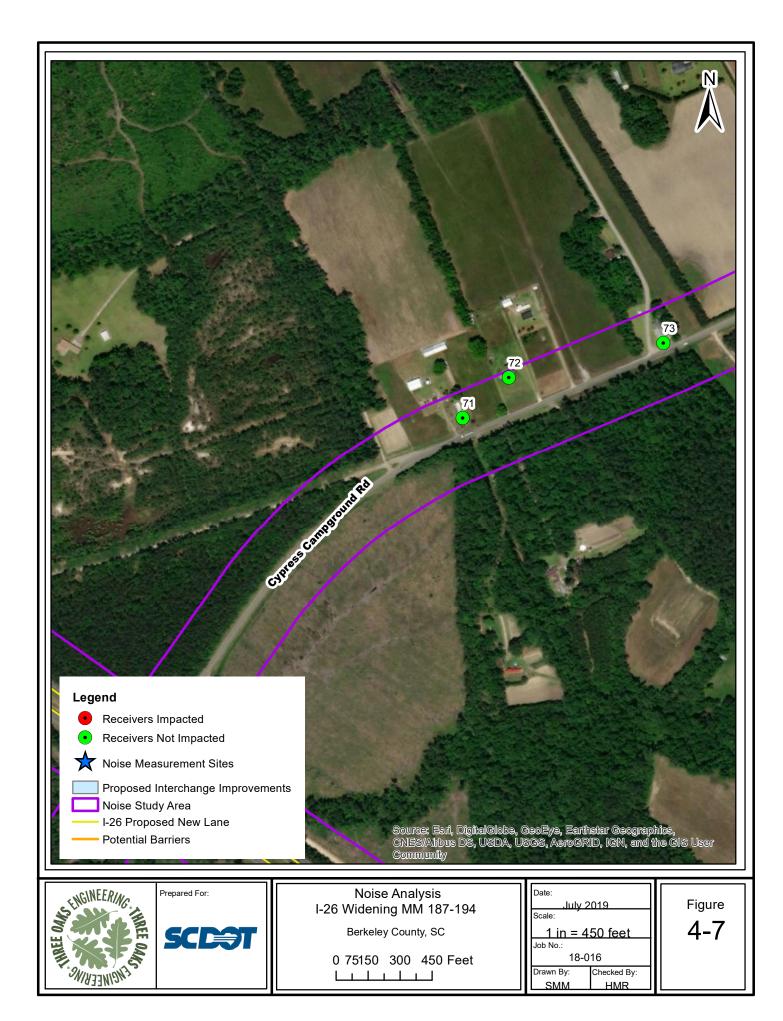

E. Model Validation

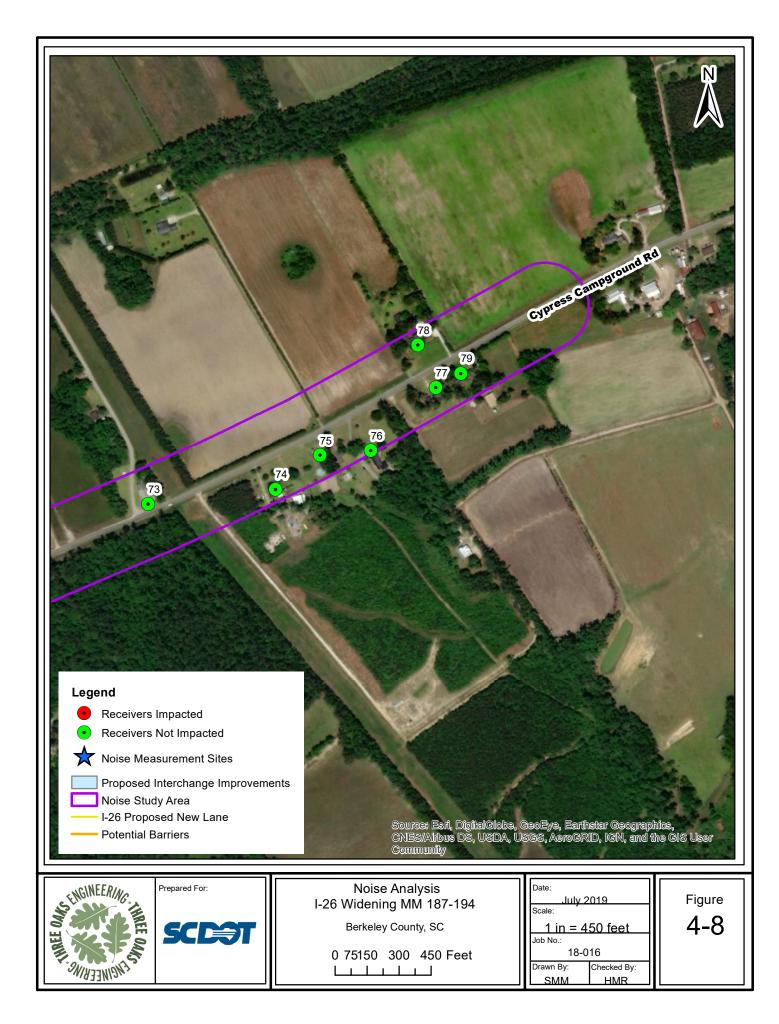

Using the ambient noise field measurements shown in Table 2, the TNM2.5 model was validated per the requirements in 23 CFR §772.11(d)(2). Leq is defined as the equivalent steady-state sound level which, in a stated period of time contains the same acoustic energy as the time-varying sound level during the same time period, with Leq(h) being the hourly value of Leq. Table 3 compares the measured Leq versus modeled Leq for the sites during the measurement period. Based on SCDOT Policy, if the measured and modeled Leq are within 3 dBA, the model is validated. Table 3 shows that the difference between the modeled and measured Leq, where applicable, was \leq 3.0 dBA at the sites; therefore, the model is validated.

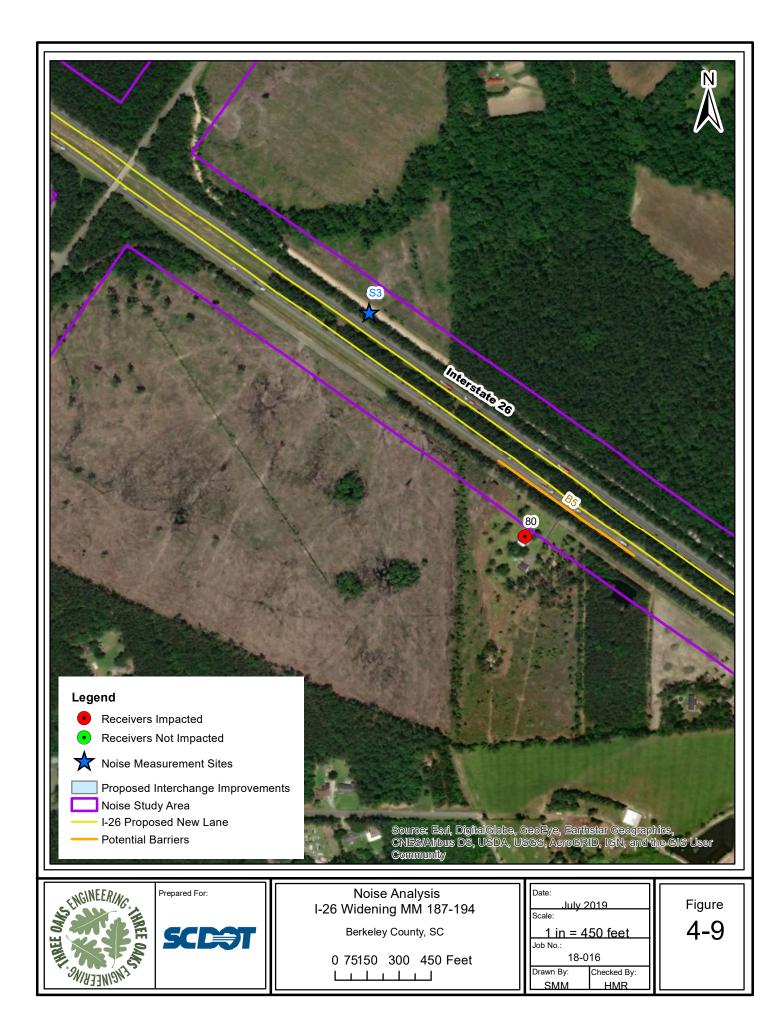

Table 3: Comparison of Measured Leq to TNM 2.5 Modeled Leq										
Location	Measured Leq	Modeled Leq	Difference							
Site #1 AM	74.4	76.0	+1.6							
Site #1 PM	74	75.4	+1.4							
Site #2 AM	73.1	75.4	+2.3							
Site #2 PM	72.3	74.4	+2.1							
Site #3 AM	72.3	75.2	+2.9							
Site #3 PM	72.3	74.3	+2.0							

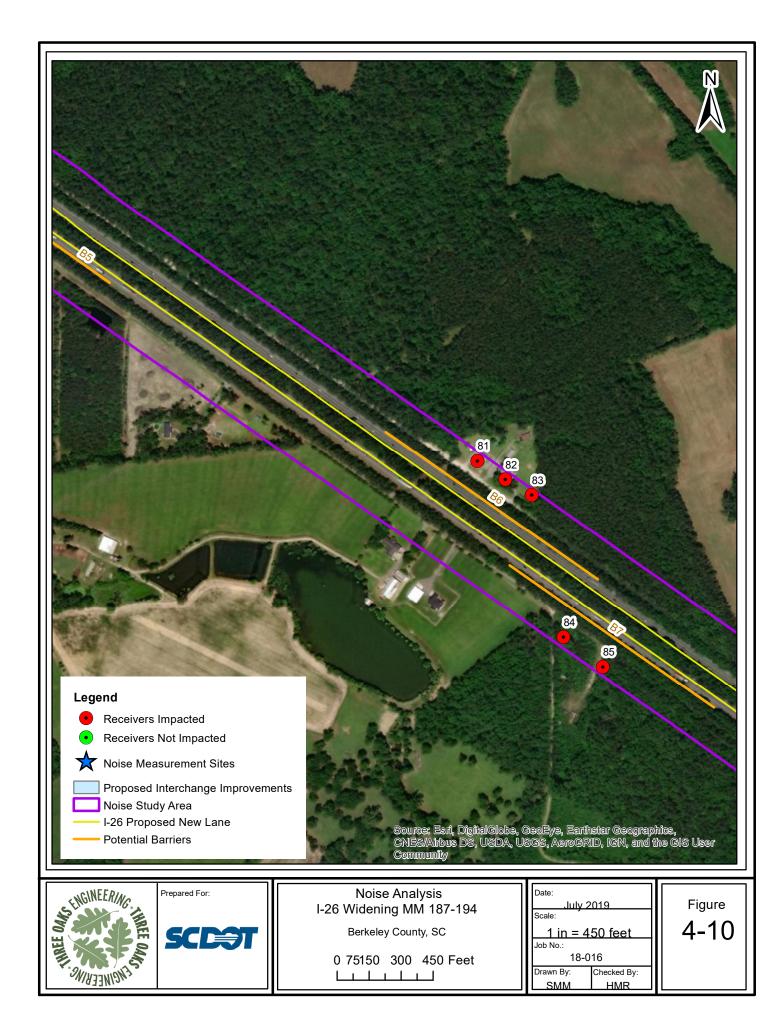












III. TRAFFIC NOISE IMPACTS

FHWA has developed noise abatement criteria and procedures in 23 CFR Part 772, as shown in Table 1, that states that traffic noise impacts occur when either:

- 1) The predicted traffic noise levels approach (within 1 dBA) or exceed the FHWA NAC for the applicable activity category shown in Table 1; or,
- 2) The predicted traffic noise levels substantially exceed the existing noise levels by \geq 15 dBA.

The TNM 2.5 model results for the existing condition, and the 2043 design year No-Build and three (3) Build Alternatives can be found in Table 4. No receivers would have a substantial increase impact for the 2043 Build Alternatives.

- A. Modeled and/or Measured Existing Year Noise Levels In the existing condition (2018), there are thirteen (13) residential receivers that have noise levels that approach or exceed the NAC criterion for its respective land use.
- B. Modeled Design Year (2043) No-Build Alternative Noise Levels There are fifteen (15) residential receivers that would have noise levels that approach or exceed the NAC criterion for its respective land use.
- C. Modeled Design Year (2043) Build Alternative 1 Noise Levels There are fourteen (14) residential receivers that would have noise levels that approach or exceed the NAC criterion for its respective land use. This alternative would also potentially require the relocation of one (1) residence.
- D. Modeled Design Year (2043) Build Alternative 2 Noise Levels There are fifteen (15) residential receivers that would have noise levels that approach or exceed the NAC criterion for its respective land use. This alternative would also potentially require the relocation of two (2) residences.
- E. Modeled Design Year (2043) Build Alternative 3 Noise Levels There are fourteen (14) residential receivers that would have noise levels that approach or exceed the NAC criterion for its respective land use.

			Т	able 4: Existi	ng and Desigr	n Year Sound	Levels				
Receptor Number	Existing	2040 No-Build	Alt 1 2040 Build	Alt 1 Increase over Existing	Alt 2 2040 Build	Alt 2 Increase over Existing	Alt 3 2040 Build	Alt 3 Increase over Existing	NAC Impact?	NAC	Land Use
1	54.2	55.8	55.6	1.4	55.6	1.4	56	1.8	N	66	В
2	61.3	63.1	63.1	1.8	63.1	1.8	63.1	1.8	N	66	В
3	67.9	69.7	69.7	1.8	69.7	1.8	69.7	1.8	Y	66	В
4	61.8	63.6	64	2.2	64	2.2	64	2.2	N	66	В
5	62.2	63.9	63.9	1.7	63.9	1.7	62.9	0.7	N	66	В
6	61.2	63	62.4	1.2	62.7	1.5	61.9	0.7	N	66	В
7	60.4	62.2	62.1	1.7	62.4	2	61.9	1.5	Ν	66	В
8	61.6	63.4	63.1	1.5	63.5	1.9	62.8	1.2	Ν	66	В
9	61.2	63	62.7	1.5	62.9	1.7	62.3	1.1	Ν	66	В
10	61.4	63.2	63	1.6	63	1.6	62.6	1.2	Ν	66	В
11	59	60.7	60.6	1.6	60.6	1.6	60.4	1.4	Ν	66	В
12	59.2	60.9	60.5	1.3	60.6	1.4	60.4	1.2	Ν	66	В
13	63.7	65.6	65.3	1.6	65.1	1.4	64.6	0.9	N	66	В
14	63.9	65.8	65.4	1.5	65.1	1.2	64.9	1.0	N	66	В
15	65.3	67.3	66.9	1.6	66.4	1.1	66.3	1.0	Y	66	В
16	66.7	68.7	68.1	1.4	67.7	1	67.6	0.9	Y	66	В
17	66.7	68.9	68.2	1.5	67.9	1.2	67.8	1.1	Y	66	В
18	64.3	66.3	65.7	1.4	65.5	1.2	65.4	1.1	Ν	66	В
19	67	69.1	69.2	2.2	68.6	1.6	68.4	1.4	Y	66	В
20	63.2	64.9	65.2	2	Relocation	-	63.7	0.5	Ν	66	В
21	62.9	64.7	Relocation	-	Relocation	-	64.2	1.3	Ν	66	В
22	61	62.4	60.9	-0.1	61.2	0.2	63.3	2.3	Ν	66	В
23	63.9	65.3	65.3	1.4	66	2.1	65.7	1.8	Ν	66	В
24	63.1	64.6	64.4	1.3	65.1	2	64.7	1.6	Ν	66	В
25	62.6	64.2	64.2	1.6	64.5	1.9	63.8	1.2	Ν	66	В
26	61.9	63.5	62.9	1	63.1	1.2	62.7	0.8	N	66	В
27	62.8	64.4	64.8	2	64.7	1.9	64.3	1.5	N	66	С
28	61.2	62.7	63.1	1.9	63	1.8	62.8	1.6	N	66	В
29	60	61.5	61.9	1.9	61.7	1.7	61.5	1.5	N	66	В
30	57.4	59	59.3	1.9	59	1.6	63.9	6.5	Ν	66	В
31	64.6	66.2	66.2	1.6	66.2	1.6	66	1.4	N	71	E
32	55.4	56.9	56.7	1.3	57.1	1.7	64.8	9.4	Ν	66	В
33	56.4	57.9	58	1.6	58.3	1.9	63.2	6.8	Ν	66	В
34	57	58.6	58.6	1.6	58.6	1.6	61.4	4.4	N	66	В
35	63.6	65.2	65.5	1.9	65.5	1.9	65	1.4	N	66	В
36	62.8	64.3	64.9	2.1	64.9	2.1	64.6	1.8	N	71	E
37	55.6	57.1	57.1	1.5	57.2	1.6	61.2	5.6	N	66	B
38	61.6	63.2	63.7	2.1	63.7	2.1	63.5	1.9	N	66	B
39	56.9	58.4	58.5	1.6	58.6	1.7	59.4	2.5	N	66	C
40	59.2	60.7	60.9	1.7	60.9	1.7	60.8	1.6	N	66	В

			Т	able 4: Existi	ng and Desig	n Year Sound	Levels				
Receptor Number	Existing	2040 No-Build	Alt 1 2040 Build	Alt 1 Increase over Existing	Alt 2 2040 Build	Alt 2 Increase over Existing	Alt 3 2040 Build	Alt 3 Increase over Existing	NAC Impact?	NAC	Land Use
41	57.9	59.5	59.4	1.5	59.5	1.6	59.4	1.5	N	66	В
42	63.4	65	65.4	2	65.4	2	65	1.6	N	66	В
43	61.3	62.9	63.2	1.9	63.3	2	63.2	1.9	N	66	В
44	62.1	63.6	64	1.9	64	1.9	64.1	2.0	N	66	В
45	56.9	58.3	58.6	1.7	58.5	1.6	59.8	2.9	N	66	В
46	59	60.5	60.7	1.7	60.6	1.6	60.6	1.6	Ν	66	В
47	61	62.6	63	2	63	2	62.9	1.9	N	66	В
48	60.7	62.2	62.6	1.9	62.6	1.9	62.6	1.9	Ν	66	В
49	60.5	62	62.3	1.8	62.4	1.9	62.3	1.8	Ν	66	В
50	55.3	56.8	56.7	1.4	56.8	1.5	57.9	2.6	N	66	В
51	62.8	64.4	64.6	1.8	64.6	1.8	64.8	2.0	N	66	В
52	57.4	58.9	58.9	1.5	58.9	1.5	59	1.6	Ν	66	В
53	59	60.5	60.7	1.7	60.7	1.7	60.7	1.7	N	66	В
54	54.4	55.8	55.7	1.3	55.7	1.3	57.3	2.9	Ν	66	В
55	57.1	58.6	58.8	1.7	58.7	1.6	58.6	1.5	Ν	66	В
56	63.4	65	65.1	1.7	65.1	1.7	65.2	1.8	Ν	66	В
57	62.1	63.6	64.2	2.1	64.2	2.1	63.7	1.6	Ν	66	В
58	58.2	59.7	59.7	1.5	59.7	1.5	59.6	1.4	N	66	В
59	61.1	62.7	63.2	2.1	63.2	2.1	63.1	2.0	N	66	В
60	57.7	59.2	59.4	1.7	59.4	1.7	59.5	1.8	N	66	В
61	54.1	55.5	55.2	1.1	55.2	1.1	55.6	1.5	N	66	В
62	54.4	55.9	55.6	1.2	55.6	1.2	55.8	1.4	N	66	В
63	70.1	71.6	70	-0.1	70.4	0.3	70.2	0.1	Y	66	В
64	70	71.1	70.2	0.2	70.2	0.2	70.2	0.2	Y	66	В
65	74.5	75.6	74.6	0.1	74.6	0.1	74.6	0.1	Y	66	В
66	49.1	50.5	49.9	0.8	49.9	0.8	49.9	0.8	Ν	66	В
67	53.2	54.8	54.9	1.7	54.9	1.7	54.9	1.7	Ν	66	С
68	50.4	51.9	51.6	1.2	51.6	1.2	51.6	1.2	Ν	66	С
69	53.2	54.6	55.2	2	55.2	2	55.2	2.0	Ν	66	В
70	53.2	54.7	54.8	1.6	54.8	1.6	54.8	1.6	N	66	В
71	56	57.5	56.8	0.8	56.8	0.8	56.8	0.8	N	66	В
72	52.5	54	53.7	1.2	53.7	1.2	53.7	1.2	N	66	В
73	59.6	61.1	61	1.4	61	1.4	61	1.4	N	66	С
74	51.5	53	53.3	1.8	53.3	1.8	53.3	1.8	Ν	66	В
75	53.7	55.1	55.8	2.1	55.8	2.1	55.8	2.1	Ν	66	В
76	50.4	51.8	51.8	1.4	51.8	1.4	51.8	1.4	N	66	В
77	54.5	56	56.9	2.4	56.9	2.4	56.9	2.4	N	66	В
78	51.3	52.7	53.6	2.3	53.6	2.3	53.6	2.3	N	66	В
79	54.8	56.3	57.2	2.4	57.2	2.4	57.2	2.4	N	66	В
80	69.2	71.5	70.8	1.6	70.8	1.6	70.8	1.6	Y	66	В

	Table 4: Existing and Design Year Sound Levels													
Receptor Number	Existing	2040 No-Build	Alt 1 2040 Build	Alt 1 Increase over Existing	Alt 2 2040 Build	Alt 2 Increase over Existing	Alt 3 2040 Build	Alt 3 Increase over Existing	NAC Impact?	NAC	Land Use			
81	71.6	72.7	71.4	-0.2	71.4	-0.2	71.4	-0.2	Y	66	В			
82	71.6	72.7	71.5	-0.1	71.5	-0.1	71.5	-0.1	Y	66	В			
83	71.5	72.7	71.1	-0.4	71.1	-0.4	71.1	-0.4	Y	66	В			
84	73.2	75.5	73.4	0.2	73.4	0.2	73.4	0.2	Y	66	В			
85	72.7	74.8	72	-0.7	72	-0.7	72	-0.7	Y	66	В			

IV. FEASIBLE AND RESONABLE CONSIDERATION OF ABATEMENT

Since there are receivers that would be impacted by the noise from the 2043 Design Year Build Alternative, abatement measures were considered for the proposed project.

When considering noise abatement measures, primary consideration shall be given to exterior areas where frequent human use occurs. Since South Carolina is not part of the FHWA-approved Quiet Pavement Pilot Program, the use of quieter pavements was not considered as an abatement measure for the proposed project. In addition, the planting of vegetation or landscaping was not considered as a potential abatement measure since it is not an acceptable Federal-aid noise abatement measure due to the fact that only dense stands of evergreen vegetation planted 100 feet deep will reduce noise levels. In accordance with 23 CFR §772.13(c), the following measures were considered and evaluated as a means to reduce or eliminate the traffic noise impacts:

- A. Acquisition of Right-of-Way The acquisition of rights-of-way to mitigate the noise levels at the affected site would result in disruptive relocations.
- B. Traffic Management Measures such as exclusive lane designations and signing for prohibition of certain vehicle type would prevent the project from serving its intended purpose, such as moving people, goods and services.
- C. Alteration of Horizontal and Vertical Alignments Alignment modifications as a means of noise abatement would result in disruptive relocations for this project and would not be cost effective.
- D. Acquisition of real property or interests therein (predominately unimproved property) to serve as a buffer zone to preempt development Adequate property is not available to create an effective buffer zone between the proposed roadway and the impacted receivers.
- E. Noise insulation of public use or nonprofit institutional structures There are no facilities within the study area that would benefit from noise insulation.
- F. Noise Barriers Among the most common noise barriers are earthen berms and freestanding walls. The optimum situation for the use of free-standing noise barriers is when a dense concentration of impacted receivers lies directly adjacent to and parallel

with the highway right-of-way. In these instances, one barrier can protect many people at a relatively low cost per impacted site.

When considering abatement, the SCDOT Noise Policy Guidelines state that noise abatement measures must be both feasible and reasonable. The feasibility and reasonableness of a noise barrier is determined by the following factors for Feasibility and Reasonableness.

1. Feasibility:

There are two mandatory feasibility factors that must be met for a noise abatement measure to be considered reasonable. The two mandatory factors must collectively be achieved in order for a noise abatement measure to be deemed reasonable. Failure to achieve any one of the factors will result in the noise abatement measure being deemed not feasible.

a. Acoustic Feasibility - It is SCDOT's policy that a noise reduction of at least 5 dBA must be achieved for at least 75 percent of impacted receivers for the noise abatement measure to be acoustically feasible. If this goal is not met, then abatement is determined not to be feasible and no further analysis is required.

b. Engineering Feasibility - Feasibility also includes engineering considerations. The ability to achieve noise reduction may be limited by engineering considerations such as the topographical features of the area, safety, drainage, utilities, maintenance and access. In addition, due to constructability constraints, the height of the noise abatement measure cannot exceed 25 feet.

2. Reasonableness:

There are three mandatory reasonable factors that must be met for a noise abatement measure to be considered reasonable. The three mandatory reasonable factors must collectively be achieved in order for a noise abatement measure to be deemed reasonable. Failure to achieve any one of the reasonable factors will result in the noise abatement measure being deemed not reasonable.

a. Noise Reduction Design Goal - It is SCDOT's policy that a noise reduction of at least 8 dBA must be achieved for 80% of those receivers determined to be in the first two building rows and considered benefited. Please note that the first two building rows will only be applicable if they are within 500 feet from the edge of pavement noise source. If the design goal is not met, then abatement is determined not to be reasonable and no further analysis is required.

b. Cost Effectiveness - The allowable cost of the abatement will be based on \$35.00 per square foot. This allowable cost is based on actual construction costs on recent SCDOT projects. This construction cost will be divided by the number of benefited receivers. If the cost per benefited receiver is less than \$30,000 then the barrier is determined to be cost effective.

c. Viewpoints of the Property Owners and Residents of the Benefited Receivers – If the noise reduction design goal and cost-effective criteria are met, SCDOT shall solicit the viewpoints of all of the benefited receivers and document a decision on either desiring or not desiring the noise abatement measure. The viewpoints will be solicited as part of the public involvement process through a voting procedure if a barrier is proposed. The voting ballot will explain that the noise abatement shall be constructed unless a majority (greater than 50% of the benefited receivers) of votes not desiring noise abatement is received. For non-owner occupied benefited receivers, both the property owner and the renter may vote on whether the noise abatement is desired.

For this noise analysis, the mitigation analysis determined that all the barriers either did not meet the design goal or the cost effectiveness criteria. Therefore, the voting process of the benefited property owners is not applicable.

3. Noise Barrier Evaluation:

Barriers 1, 4, and 5 were modeled to abate noise impacts to three (3) isolated impacted residences (Receptors 3, 64, and 80, respectively). The addition of a noise barrier would provide a 5 dBA reduction for the impacted receivers, and therefore were determined feasible. However, the receivers do not meet the noise reduction goal of 8 dBA, and therefore, the barriers were determined not reasonable.

Barrier 2 was modeled to abate noise impacts to residences (Receptors 15, 16, 17, and 19) along Jared Lane. The addition of a noise barrier would provide a 5 dBA reduction for the impacted receiver, and therefore was determined feasible. However, the receiver does not meet the noise reduction goal of 8 dBA, and therefore, this barrier was determined not reasonable.

Barrier 3 was modeled to abate noise impacts to residences (Receptors 63 and 64) along Emma Lane. The addition of a noise barrier would provide a 5 dBA reduction for the impacted receiver, and therefore was determined feasible. However, the receiver does not meet the noise reduction goal of 8 dBA, and therefore, this barrier was determined not reasonable.

Barrier 6 was modeled to abate noise impacts to residences along Fivel Lane (Receptors 81 - 83). The addition of a noise barrier would provide a 5 dBA reduction for the impacted receiver, and therefore was determined feasible. The noise barrier would provide an 8 dBA reduction for the impacted receivers, which meets the noise reduction design goal. Based on SCDOT policy for estimating barrier costs at \$35/ square foot, the total cost of this barrier would be \$976,920 or \$325,640 per benefitted receiver. This cost per benefitted receiver exceeds the SCDOT allowable cost of \$30,000 and therefore, is not reasonable.

Barrier 7 was modeled to abate noise impacts to residences (Receptors 84 - 85) along Rudd Road. The addition of a noise barrier would provide a 5 dBA reduction for the impacted receiver, and therefore was determined feasible. The noise barrier would provide an 8 dBA reduction for the impacted receivers, which meets the noise reduction design goal. Based on SCDOT policy for estimating barrier costs at \$35/ square foot, the total cost of this barrier would be \$997,955 or \$498,977.50 per benefitted receiver. This cost per benefitted receiver exceeds the SCDOT allowable cost of \$30,000 and therefore, is not reasonable.

Barrier descriptions are shown in Table 5 (below). Table 6 includes a summary of the barrier evaluations. The SCDOT Feasible and Reasonable Worksheets are located in Appendix C. Overall, as a result of the mitigation analysis, there were no feasible and reasonable solutions to mitigate for the predicted noise impacts according to the SCDOT Traffic Noise Abatement Policy. Therefore, there are no noise barriers proposed to be carried forward to the construction phase.

Table 5: Barrier Descriptions											
		Heig	hts along Ba	rrier							
Name	Туре	Min (ft)	Avg (ft)	Max (ft)	Length (ft)	Area (sq ft)					
Barrier 1	w	25	25	25	159	3,982					
Barrier 2	W	25	25	25	1,172	2,9293					
Barrier 3	w	25	25	25	905	22,629					
Barrier 4	w	25	25	25	554	13,839					
Barrier 5	w	25	25	25	762	19,038					
Barrier 6	w	20	22.49	23	1,241	27,912					
Barrier 7	W	23	24.44	25	1,167	28,513					

	Table 6: Barrier Evaluation Summary									
Barrier	Receiver Number	Acoustically Feasible? (Y/N)	Engineering Feasibility? (Y/N)	Overall Feasible? (Y/N)	Meets Noise Reduction Goal? (Y/N)	Is Barrier Cost Effectiveness? (Y/N)	Overall Reasonable? (Y/N)	Conclusion		
B1	3	Y	Y	Y	N	N	N	Feasible, but not reasonable		
B2	15, 16, 17, 19	Y	Y	Y	N	N	N	Feasible, but not reasonable		
В3	63, 65	Y	Y	Y	N	N	N	Feasible, but not reasonable		
B4	64	Y	Y	Y	Ν	N	N	Feasible, but not reasonable		
B5	80	Y	Y	Y	Ν	N	N	Feasible, but not reasonable		
B6	81, 82, 83	Y	Y	Y	Y	N	Ν	Feasible, but not reasonable		
B7	84, 85	Y	Y	Y	Y	N	Ν	Feasible, but not reasonable		

V. FINDINGS AND RECOMMENDATIONS

Overall, there were 14-15 receivers impacted, depending on the alternative, in the noise study area for the 2043 design year Build Alternative condition. As a result, mitigation analysis was warranted according to the SCDOT Traffic Noise Abatement Policy. None of the barrier analyses results met both of the feasible and reasonable criteria as per the SCDOT Traffic Noise Abatement Policy.

VI. CONSTRUCTION NOISE

If the build alternative is chosen, temporary increases in noise levels would occur during the time period that construction takes place. Noise levels due to construction, although temporary, can impact areas adjacent to the project. The major noise sources from construction would be the heavy equipment operated at the site. However, other construction site noise sources would include hand tools and trucks supplying and removing materials

Typical noise levels generated by different types of construction equipment are presented in Table 6. Construction operations are typically broken down into several phases including clearing and grubbing, earthwork, erection, paving and finishing. Although these phases can overlap, each has their own noise characteristics and objective.

SCDOT's "2007 Standard Specifications for Highway Construction" includes various references to construction noise, including Sections 107.6-paragraph 3, 606.3.1.6.3-paragraph 1, 607.3.1.6.3-paragraph 1, 607.3.2.6.3-paragraph 1, and 702.4.15-paragraph 3. The SCDOT specifications cited above are generalized for nuisance noise avoidance. Detailed specifications suggested for consideration for inclusion in the proposed project's construction documents may consist of the following:

- Construction equipment powered by an internal combustion engine shall be equipped with a properly maintained muffler.
- Air compressors shall meet current USEPA noise emission exhaust standards.
- Air powered equipment shall be fitted with pneumatic exhaust silencers.
- Stationary equipment powered by an internal combustion engine shall not be operated within 150 feet of noise sensitive areas without portable noise barriers placed between the equipment and noise sensitive sites. Noise sensitive sites include residential buildings, motels, hotels, schools, churches, hospitals, nursing homes, libraries and public recreation areas.
- Portable noise barriers shall be constructed of plywood or tongue and groove boards with a noise absorbent treatment on the interior surface (facing the equipment).
- Powered construction equipment shall not be operated during the traditional evening and/or sleeping hours within 150 feet of a noise sensitive site, to be decided either by local ordinances and/or agreement with the SCDOT.

Table 7: Leq Noise Level (dBA) at 50 Feet for Construction Equipment							
Equipment dBA Leq @ 50							
Earth Moving:							
Front Loader	79						
Back Hoe	85						
Dozer	80						
Tractor	80						
Scraper	88						
Grader	85						
Truck	91						
Paver	89						
Materials Handling:							
Concrete Mixer	85						
Concrete Pump	82						
Crane	83						
Derrick	88						
Stationary:							
Pump	76						
Generator	78						
Compressor	81						
Impact:							
Pile Driver	100						
Jackhammer	88						
Rock Drill	98						
Other:							
Saw	78						
Vibrator	76						
SOURCE: Grant, Charles A. and Rea	gan, Jerry, A., <i>Highway</i>						
Construction Noise: Measurem	ent, Prediction and						
Mitigation							

VII. COORDINATION WITH LOCAL OFFICIALS

SCDOT has no authority over local land use planning and development. SCDOT can only encourage local officials and developers to consider highway traffic noise in the planning, zoning and development of property near existing and proposed highway corridors. The lack of consideration of highway traffic noise in land use planning at the local level has added to the highway traffic noise problem which will continue to grow as development continues adjacent to major highway long after these highways were proposed and/or constructed.

In order to help local officials and developers consider highway traffic noise in the vicinity of proposed Type I project, SCDOT will inform them of the predicted future noise levels

and the required distance from such projects needed to ensure that noise levels remain below the NAC for each type of land use per 23 CFR §772.17. The contour distances to the 66 and 71 dBA sound levels are shown in Table 8. Please note that the values in the table do not represent predicted levels at every location at a particular distance back from the roadway. Sound levels will vary with changes in terrain and will be affected by the shielding of objects such as buildings.

Table 8: Contour Distances (dBA)								
NAC Land Use	Impact Contour	Worst-Case Approximate Distance from Edge of Nearest Travel Lane						
Category B & C (Residential, outdoor recreation facilities, churches, schools, hospitals, etc.	66 dBA	410 Feet						
Category E (Hotels, motels, offices, restaurants/bars, and other developments/activities not included in the other NAC's)	71 dBA	230 Feet						
SOURCE: Three	SOURCE: Three Oaks Engineering, August, 2019							

APPENDIX A

Traffic Data

Traffic Data

			Exis	ting Traffic 20	18			
	I-26 Mainline		Ridgeville Road North of I-26		Ridgeville Road South of I-26		Cypress Campground Road	
Speed	70 r	nph	45 mph		45 mph		55mph	
Lane Width	4 lanes at 12 feet		2 lanes at 12 feet		2 lanes at 12 feet		2 lanes at 12 feet	
Directional Split	By Traffic Count		By Traffic Count		By Traffic Count		By Traffic Count	
	81% Autos +	3% Medium						
Vehicle Mix	Trucks + 16%	Trucks + 16% Heavy Trucks 98% Autos + 2% Heavy Trucks 98% Autos + 2% Heavy Trucks		98% Autos + 2% Heavy Trucks				
	Eastbound	Westbound	Northbound	Southbound	Northbound	Southbound	Northbound	Southbound
Peak	2470	2439	382	347	487	334	30	3
Autos (per lane)	1,000	988	374	340	477	327	29	2
Medium Trucks (per lane)	37	37	0	0	0	0	0	
Heavy Trucks (per lane)	198	195	8	7	10	7	1	

Existing Traffic 2018 - Ramps & Exits									
I-26 WB to Ridgeville Ridgeville to I-26 WB I-26 EB to Ridgeville Ridgeville to I-26 EB									
Speed	35 mph	35 mph	35 mph	35 mph					
Lane Width	1 lane at 12 feet								
Directional Split	By Traffic Count	By Traffic Count	By Traffic Count	By Traffic Count					
Vehicle Mix	98% Autos + 2% Heavy Trucks								
	I-26 WB Exit Ramp	I-26 WB On Ramp	I-26 EB Exit Ramp	I-26 EB On Ramp					
Peak	467	143	124	477					
Autos (per lane)	458	140	122	467					
Medium Trucks (per lane)	0	0	0	0					
Heavy Trucks (per lane)	9	3	2	10					
Source: Traffic Report by Stantec 2019									

			No-Build D	esign Year 20	43 Traffic				
	I-26 M	I-26 Mainline		Ridgeville Road North of I-26		Ridgeville Road South of I-26		Cypress Campground Road	
Speed	70 r	nph	45 mph		45 mph		55mph		
Lane Width	4 lanes a	4 lanes at 12 feet		2 lanes at 12 feet		2 lanes at 12 feet		2 lanes at 12 feet	
Directional Split	By Traffic Count		By Traffic Count		By Traffic Count		By Traffic Count		
Vehicle Mix		81% Autos + 3% Medium Trucks + 16% Heavy Trucks		98% Autos + 2% Heavy Trucks		98% Autos + 2% Heavy Trucks		98% Autos + 2% Heavy Trucks	
	Eastbound	Westbound	Northbound	Southbound	Northbound	Southbound	Northbound	Southbound	
AM Peak	2774	2914	549	500	731	511	46	46	
Autos	1,123	1,180	538	490	716	501	45	4	
Medium Trucks	42	44	0	0	0	0	0	(
Heavy Trucks	222	233	11	10	15	10	1	:	

No-Build Design Year 2043 Traffic - Ramps & Exits								
	I-26 WB to Ridgeville	Ridgeville to I-26 WB	I-26 EB to Ridgeville	Ridgeville to I-26 EB				
Speed	35 mph	35 mph	35 mph	35 mph				
Lane Width	1 lane at 12 feet	1 lane at 12 feet	1 lane at 12 feet	1 lane at 12 feet				
Directional Split	By Traffic Count	By Traffic Count	By Traffic Count	By Traffic Count				
Vehicle Mix	98% Autos + 2% Heavy Trucks	98% Autos + 2% Heavy Trucks	98% Autos + 2% Heavy Trucks	98% Autos + 2% Heavy Trucks				
	I-26 WB Exit Ramp	I-26 WB On Ramp	I-26 EB Exit Ramp	I-26 EB On Ramp				
Peak	497	167	191	687				
Autos (per lane)	487	164	187	673				
Medium Trucks (per lane)	0	0	0	0				
Heavy Trucks (per lane)	10	3	4	14				
Source: Traffic Report by St	antec 2019	· · · · · · · · · · · · · · · · · · ·						

			Build De	sign Year 2043	B Traffic			
	I-26 M	ainline	Ŭ,	ville Road h of I-26	Ridgeville South o		Cypress Campgro	ound Road
Speed	70 r	nph	45	5 mph	45 m	ph	55mph	
Lane Width	6 lanes a	it 12 feet	4 lanes	at 12 feet	4 lanes at	12 feet	2 lanes at 12	2 feet
Directional Split	By Traff	ic Count	By Tra	offic Count	By Traffic	Count	By Traffic C	ount
	81% Autos +	3% Medium						
Vehicle Mix	Trucks + 16%	Heavy Trucks	98% Autos +	2% Heavy Trucks	98% Autos + 2%	Heavy Trucks	98% Autos + 2% H	eavy Trucks
	Eastbound	Westbound	Northbound	Southbound	Northbound	Southbound	Northbound	Southbound
AM Peak	2774	2914	549	500	731	511	46	4
Autos	749	787	269	245	358	250	45	4
Medium Trucks	28	29	0	0	0	0	0	
Heavy Trucks	148	155	5	5	7	5	1	

	Build	Design Year 2043 Traffic	- Ramps & Exits	
	I-26 WB to Ridgeville	Ridgeville to I-26 WB	I-26 EB to Ridgeville	Ridgeville to I-26 EB
Speed	35 mph	35 mph	35 mph	35 mph
Lane Width	2 lane at 12 feet			
Directional Split	By Traffic Count	By Traffic Count	By Traffic Count	By Traffic Count
Vehicle Mix	98% Autos + 2% Heavy Trucks			
	I-26 WB Exit Ramp	I-26 WB On Ramp	I-26 EB Exit Ramp	I-26 EB On Ramp
Peak	497	167	191	687
Autos (per lane)	244	82	94	337
Medium Trucks (per lane)	0	0	0	0
Heavy Trucks (per lane)	5	2	2	7
Source: Traffic Report by Sta	antec 2019			

		2043 Traffic - Volvo Ram	ps & Exits	
	I-26 WB to Volvo - Ramp 2	Volvo to I-26 WB - Ramp 3	I-26 EB to Volvo - Ramp 1	Volvo to I-26 EB - Ramp 4
Speed	45 mph	45 mph	45 mph	45 mph
Lane Width	2 lanes at 12 feet	1 lane at 16 feet	1 lane at 16 feet	2 lanes at 12 feet
Directional Split	By Traffic Count	By Traffic Count	By Traffic Count	By Traffic Count
Vehicle Mix	80% Autos + 6% Heavy Trucks	80% Autos + 6% Heavy Trucks +	80% Autos + 6% Heavy Trucks +	80% Autos + 6% Heavy Trucks + 14%
	I-26 WB Exit Ramp	I-26 WB On Ramp	I-26 EB Exit Ramp	I-26 EB On Ramp
Peak	743	125	186	623
Autos (per lane)	297	100	149	249
Medium Trucks (per lane)	52	18	26	44
Heavy Trucks (per lane)	22	8	11	19
Source: Traffic Report by Sta	antec 2019		-	-

APPENDIX B

Field Measurement Data Sheets

	and the second	A State		1	OISE	SURV	EY SHEE	Т				
EQUIPM	ENT: I	METER	NL-	-52	2	-	CALIBRA	TOR	NC-	-74		_
CALIBRA	TION:	START	93.	7	_dB		end <u>9</u>	3.6	2	dB		
RESPONS	SE:	FAST	/	SLOW	/		A-WEIGH	ITING_	\checkmark	В	ATTER	Y CHECK
WEATHE	R DATA: CLE	SAR, b	ut (lou	dy "	120						
			Hourly	/ Traff	ic Base	ed on (Concurre	nt Tra	ffic Co	unts		
Site	Time Period		Eastbo	und La	nes		1	Westb	ound L	anes		Measured Leq
		Autos	MT	HT	Bus	MC	Autos	MT	НТ	Bus	МС	
#I	7:35 AM 7:50 AM	293	B	603	0	0	301	29	70	0	4	74.4
	= Medium Tru		нт	= Hea	vy Tru	cks			МС	= Mot	orcycle	es
NOTES:	Speed Lim	ur 7	Ôu	att.								
			1-11		S	ITE SK	ЕТСН					
	1-26	EAS		21a	nes l	east	baurd					
2				C	RAS	s h	led or)				
	~ × × ×	××	××	fenc	Gerelin	eseo e ×	CUEM	20.4	E	n l'	88 NM	-26 NEST-
	di	or pa	TT S	12 OPN	in t							
		100							Ţ	csiale	vice_	
BACKGR	OUND NOISE:	Insec	ts,	Bie	105	1.						
MAJORS	SOURCES:	-26	5									
UNUSUA	L EVENTS:											
OTHER N	NOTES: VIDE	ED OF	TEAT	Fic 1	DWY	AILE	Acare	ATE	Cau	275		
ENGINE												

		A. A.		ſ	NOISE	SURV	YEY SHEE	T		11		
EQUIPM	ENT:	METER	NL	-5	2	-	CALIBRA	TOR	NC-	74		-
CALIBRA	TION:	start <u>C</u>	73	.7	_dB		END_C	13	7_	dB		
RESPON	SE:	FAST		SLOW	/		A-WEIGH	ITING_		В	ATTER	Y CHECK
WEATHE	R DATA:	3° F. (201	70 h	un	vidi	tu, N	last	Ly c	1040	JU.	light thum
			Houri	y Traff	ic Base	ed on (Concurre	nt Tra	ffic Co	unts		
Site	Time Period		Eastbo	ound Le	anes		1	Nestb	ound L	anes		Measured Leq
		Autos	MT	HT	Bus	MC	Autos	MT	НТ	Bus	MC	
#1	5:17 5:32pm	413	9	30	2	0	436	13	48	2	0	74.0
	= Medium Tru	ucks	нт	= Hea	ivy Tru	cks			MC	= Mot	orcycl	es
NOTES:	Speed lir	nit7	ON	APH								
					S	ITE SK	ETCH	() 				
			-2	lan	25	Eas	toou	nd				
			C	arcis	SN	Med	ian					
			21	lane	s	Ves	thou	nol				-
		(-	aras	Secl	Cle	ar 2	one		Mn	N 18	8	
XXX	$\times \times \times \times \times$	$X \times$	XX	XXF	enc	e liv	he xx	XXX	(Xex	SXXV	r y v	*×××××
-	dirt a	Cress	nocia	X			-				- 10- 10	
		nin tr										
											Rest	tence
BACKGR	OUND NOISE:	INSP	Cto	5.11	aht	th	und-	er		- 200		
MAJOR	SOURCES: \-	210			U,							
UNUSUA	AL EVENTS:											
OTHER N	NOTES:			lod					и			
SENGINE	ERING											

THREE OAKS ENGINEERING

				N	OISE	SURV	YEY SHEE	T				
EQUIPM	ENT: I	METER	NL	-52		-	CALIBRA	TOR	NC	-74		-
CALIBRA	TION:	START	93.	7	_dB		END	3.	1.	₫B		
RESPON	SE:	FAST	/	SLOW	/		A-WEIGH	ITING_	\checkmark	В	ATTER	Y CHECK
WEATHE	R DATA: 75	o Mi	Sau	1 C	au	<u>py</u>		_				
			Hourly	, Traff	ic Base	ed on (Concurre	nt Tra	ffic Co	unts		
Site	Time Period		Eastbo	ound La	anes		1	Nestb	ound L	anes		Measured Leg
		Autos	MT	HT	Bus	мс	Autos	MT	HT	Bus	МС	·
#2	8.17 AM- 8:32 AM	280	11	91	0	0	397	12	68	0	0	73.1
МТ	= Medium Tru	icks	нт	= Hea	vy Tru	cks			МС	= Mot	orcycle	25
NOTES:	Speed In	mit	70r	npr							_	
	1 0 0 . 1		10			ITE SK	ЕТСЦ					
					3	IIE JK	EICH					
ميليه							<				-	
			261	NEST	<u> </u>	-			-			
										- Transfer	and the second second	
												-
Name		National and						!	-266	GAS	Г	->
Berger	VIIII	1 200	0.00	ind	111							12111
COLLIE	SL	1	e pa	VEQ	1	G	LASS					
1	hees + Dit	und)	6		2100		TEOR	>		1		
	STA	6126		\bigcap			B SORI			, and the second s		
	L-124	LEA			~							
		1			/	1-010	STEN					
BACKGR	OUND NOISE:	Insec	ts	P	C.	11						
MAJOR	SOURCES: -	210										
UNUSUA		ar h	orna	28	22	AM						
OTHER N	NOTES: VID	EO OF	TEF	AFFIC	Fo	e A	TULA	24				
NGINE								1				

EQUIPMENT: METER NL-52 CALIBRATOR NC-74 CALIBRATION: START 73.7 dB END 93.7 dB RESPONSE: FAST SLOW A-WEIGHTING BATTERY CHECK WEATHER DATA: 7.3°F, MOSTLY CLOUDY Site Time Period Hourly Traffic Based on Concurrent Traffic Counts Measured Leq Autos MT HT Bus MC Autos MT HT Bus MC 44:35pm 388 ID 48 I D 390 8 58 D 0 72.3 MT = Medium Trucks HT = Heavy Trucks MC = Motorcycles NOTES: Speed IIMIH 10 Mph SITE SKETCH STESSEY CAMERA HT = Heavy Grass Autos Dirt Rd Shrub BACKGROUND NOISE: INSECTS MAJOR SOURCES: J210 UNUSUAL EVENTS: OTHER NOTES: OTHER NOTES:					î	NOISE	SURV	YEY SHEE	T				
RESPONSE: FAST	EQUIPM	ENT: I	METER_	NL	- 50	2		CALIBRA	TOR	VIC	7	4	-
WEATHER DATA: $73^{\circ}F$, MOSTLY Cloudy Site Time Period Hourly Traffic Based on Concurrent Traffic Counts Eastbound Lanes Measured Leq Autos MT HT Bus MC HT Bus MC HT Bus MC Autos MT HT Bus MC HT Bus MC HT Bus MT HT Bus MT HT Bus MT HT Bus MT HT Bus	CALIBRA	TION:	START	73.	7	_ dB		end_C	13:	$\overline{)}$	dB		
IDENTIFY TRAFFIC Based on Concurrent Traffic Counts Weasured Lanes Autos MT HT Bus MC MC Autos MT HT Bus MC	RESPONS	SE:	FAST		SLOW	/		A-WEIGH	iting_	/	<u> </u>	ATTER	
Site Time Period Lanes Westbound Lanes Measured Leg Autos MT HT Bus MC	WEATHE	R DATA:	3°F	, M	105	My	CIC	uolu	1				
Autos MT HT Bus MC Autos MT HT ##2 4:30- 4:35pm 388 ID 48 I D 390 8 58 O 72.3 MT = Medium Trucks HT = Heavy Trucks MC = Motorcycles NOTES: Speed limit TO mph SITE SKETCH I-ale West Grass Jane Dirt Parent Background Noise: Insects Motorcycles MC = Motorcycles NOTES: Speed Imit To mph Stresey Background Noise: Insects Marce Imit To mph				Hourly	y Traff	ic Base	ed on (Concurre	nt Tra	ffic Co	unts		
#2 4:30- 4:35pm 388 ID 48 1 0 390 8 58 0 0 72.3 MT = Medium Trucks HT = Heavy Trucks MC = Motorcycles NOTES: Speed limit 10 mph Site SKETCH I - 210 West Grass Jack Cast Stresey Ramer Paved Grass Shrub BACKGROUND NOISE: INSECTS MAIOR SOURCES: 1-210 UNUSUAL EVENTS:	Site	Time Period		Eastbo	ound Lo	anes			Nestb	ound L	anes		Measured Leq
$\frac{443}{4435} \frac{435}{500} \frac{388}{10} \frac{148}{10} \frac{10}{500} \frac{58}{50} \frac{0}{10} \frac{12.3}{12.3}$ $\frac{MT = Medium Trucks}{NOTES:} \frac{MT = Heavy Trucks}{Speed limit 10 mph}$ $\frac{SITE SKETCH}{1 - 210 West}$ $\frac{1 - 210 West}{45}$ $\frac{1 - 210 West}{45}$ $\frac{1 - 210 Fast}{45}$ $\frac{1 - 210 Fast}{45}$ $\frac{1 - 210 Fast}{45}$ $\frac{1 - 210 Fast}{5}$			Autos	MT	HT	Bus	MC	Autos	MT	HT	Bus	MC	
NOTES: Speed limit 70 mph SITE SKETCH I-QUE West I-QUE West I-QUE East Jersey Ramer M- 24 E	#2	4:20- 4:35pm	388	ID	48	1	0	390	8	58	0	0	72.3
Speed limit 10 mph SITE SKETCH 1-210 West 1-210 West 1-210 West Denser 1-210 East 1-210 East 1-210 Kest Grass Stane Dirt Rol Shrub East Ea		= Medium Tru	ucks	нт	= Hea	ivy Tru	cks			MC	= Mot	orcycle	es
SITE SKETCH 1-24 West 1-24 East Jersey Ramer 1-24 E	NOTES:	Speed lin	nit - 70	Sm	Dh								
Jersey Bamer 1-24 East 1-24 East 1-24 East Grass Stoging Area Background Noise: Insects MAJOR SOURCES: 1-24 UNUSUAL EVENTS:						S	ITE SK	ETCH					
Jersey Bamer 1-24 East 1-24 East 1-24 East Grass Stoging Area Background Noise: Insects MAJOR SOURCES: 1-24 UNUSUAL EVENTS:													
BACKGROUND NOISE: INSECTS MAJOR SOURCES: 1-210 UNUSUAL EVENTS:	-			-	1-	210	We	st			1246	And Street Stree	
MAJOR SOURCES: 1-210 UNUSUAL EVENTS:	JRFSF	aging rea	r pa	1 Nec	1	ane Sh	Erc	ISS It Rol					1_1/11
UNUSUAL EVENTS:				cts								14	
			-210										
OTHER NOTES:	UNUSUA	L EVENTS:											
	OTHER N	IOTES:											

					NOISE	SLIRV	YEY SHEE	:т				
EQUIPM	FNT.	METER	NL				CALIBRA		NC.	-74		
												-
CALIBRA	TION:	START	43	.	_ dB		END	13.		dB		
RESPON	SE:	FAST		SLOW	/		A-WEIGH	ITING_	\checkmark	В	ATTER	Y CHECK
WEATHE	R DATA: SU	inny.	+CI	ordi	4	160						
			Hourly	y Traff	ic Bas	ed on (Concurre	nt Tra	ffic Co	unts		
Site	Time Period		Eastbo	ound La	anes		1	Vestb	ound L	anes		Measured Leq
		Autos	MT	HT	Bus	MC	Autos	MT	HT	Bus	MC	
#3	849AM- 9:04AM	_			parate -	-	329	22	95	0	0	72.3
мт	= Medium Tru	ucks	нт	= Hea	ivy Tru	icks			МС	= Mot	orcycle	es
NOTES:	East bown	d lan	es o	bStr	ucti		iew f	non				
6	speed li	mit	70 1	NO	h							
					S	ITE SK	ETCH					
to begin the												
-	5-1-	7 10 50	ST				_					
-		addin Mary Million	de ante monte			,						
				G	RPSS	SHe	UB/TR	EE N	1601	(m		
	1											
				· ·				- 1	- 3			- and the second
					-	1	-26 W	lest	\geq			
TREE	NE	23										
THEE	XXXX	CEED	CEX.	XX	X	x-X-7	<+X)	(\rightarrow)		-K-X	XX	XX
	DIET COA	0			$ \not\approx$							
			Sca	nel	-Par-JP	2						
BACKGR	OUND NOISE:	Inse	ds		40-40%							
MAJOR	SOURCES:	-26										
UNUSUA	AL EVENTS:											
OTHER I	NOTES: VIC	YED &	F.T	raff	7C	tor	nake	000	curc	x-te	COL	inte
NGINE						1.0	8 8 H					

THREE OAKS ENGINEERING

				٦	NOISE	SURV	'EY SHEE	Т				
EQUIPM	ENT: f	METER	NL-	58	2	_	CALIBRA	TOR_	NC	- 71	1	
CALIBRA	TION:	START_C	73:	7	_dB		END	73	7	dB		
RESPONS	SE:	FAST	/	SLOW	I		A-WEIGH	ITING_	/	_ в	ATTER	Y СНЕСК
WEATHE	R DATA:	3°F,	\mathcal{M}	ast	14	CVD	uchy					
			Hourly	, Traff	ic Base	ed on (Concurre	nt Tra	ffic Co	unts	2.2015	
Site	Time Period		Eastbo	und Lo	anes		۱	Nestb	ound L	anes		Measured Leq
		Autos	MT	HT	Bus	МС	Autos	MT	HT	Bus	MC	
#3	4:45- 5:00pm		-	-			3105	11	55	0	0	72.3
	= Medium Tru				vy Tru						orcycle	es
	Eastbour				stra	ucte	id fm	m	vier	S		
0	perch lin	AIT	OW	ypn	S	ITE SK	FTCH					
		4	e									
		1-2	le	Eas	Ŧ							
		C	IVCIS	s S	hn	NO	Tree	Mec	viou	\cap		
-												
				1-	24	W-	est	-7		provide the second	-	
Tree	line											
		ence	XX	$\times \times$	××	\propto	\mathbb{Z}	<i>~~</i>	<u>k x</u>	\times	614	XXXXV
-		Roa								- 6-		
and the second state of the second seco	p											
	Scru	.o lar	101									
BACKGR	OUND NOISE:	Insec	3									
MAJORS	SOURCES:	-211										
	L EVENTS:	<u>. 123.34</u>										
OTHER N								112				

THREE OAKS ENGINEERING

APPENDIX C

Feasible and Reasonable Worksheets

Date: June 2019

Project Name	-26 Widening MM 187 -	194 Berkeley County		
Highway Traffic	Noise Abatement Measure	Barrier 1 - Receiver 3		
Feasibility				
Number of Impac	ted Receivers	Number of E	lenefited Receivers	1
Percentage of Imp noise abatement r	pacted Receivers that would ac neasure	hieve a 5 dBA reduction fro	om the proposed	100
NOTE:SCDOT Po achieve at least a 5	ise abatement measure acousti olicy indicates that 75% of the 5 dBA reduction for it to be acc by of the following issues limit	impacted receivers must pustically feasible.	Yes Yes	No No the noise reduction goal?
	Topography	Yes	× No	5
	Safety	Yes	× No	
	Drainage	Yes	No No	
	Utilities	Yes	× No	
	Maintenance	Yes	🗵 No	
	Access	X Yes	No	
	Exposed Height of W	all Yes	🛛 No	
Current access inhibits extendi		or any of the questions	above, please expl	lain below.
Current access minoris extendi	ing the barrier any further.			

Reasonableness

#1: Noise Reduction Design Goal	
Number of Benefited Receivers 1	Number of Benefited Receivers that achieve at least an 8 dBA reduction
Percentage of Benefited Receivers in the first two building rows t the proposed noise abatement measure. NOTE: SCDOT Policy i first two building rows must achieve at least a 8 dBA reduction for	ndicates that 80% of the benefited receivers in the 0 or it to be reasonable.
Does the proposed noise abatement measure meet the noise reduct If "Yes" is marked, continue to #2. If "No" is mark	ion design goal? Yes No
#2: Cost Effectiveness	
Estimated cost per square foot for noise abatement measure	Estimated construction cost for noise abatement measure
Estimated cost per Benefited Receiver	
Based on the SCDOT policy of \$30,000 per Benefited Receiver, w NOTE: SCDOT Policy states that the preliminary noise analysis is based specific construction cost should be applied at a cost per square foot basis	on \$35.00 per square foot and a more project- Ves L No
If "Yes" is marked, continue to #3. If "No" is mark	ked, then abatement is determined NOT to be reasonable.
#3: Viewpoints of the property owners and residents of	the benefitted receivers
Number of Benefited Receivers (same as above)	
Number of Benefited Receivers in support of noise abatement measure	Percentage of Benefited Receivers in support of noise abatement measure
Number of Benefited Receivers opposed to noise abatement measure	Percentage of Benefited Receivers opposed to noise abatement measure
Number of Benefited Receivers that did not respond to solicitation on noise abatement measure	Percentage of Benefited Receivers that did not respond to solicitation on noise abatement measure
Based on the viewpoints of the property owners and residents of the abatement measure be reasonable? NOTE: SCDOT Policy indica constructed unless greater than 50% of the benefited receptors are	ates that the noise abatement shall be 🔲 Yes 🔲 No
Final Determination for Noise Abatement Measure Feasible, but not reasonable.	

Date: June 2019

	c Noise Abatement Measure	er 2 - Receiver 1:	5, 16, 17, & 1	9
<u>Feasibility</u>				
Number of Impa	acted Receivers 4	Number of B	Benefited Receiv	vers 3
Percentage of In noise abatement	npacted Receivers that would achieve a measure	5 dBA reduction fro	om the proposed	75
• •	oise abatement measure acoustically fea Policy indicates that 75% of the impacte		🗵 Yes	🔲 No
	5 dBA reduction for it to be acoustical			
achieve at least a	5 dBA reduction for it to be acousticall any of the following issues limit the abil	y feasible. ity of the abatement	<u> </u>	ieve the noise reduc
achieve at least a	5 dBA reduction for it to be acousticall any of the following issues limit the abil Topography	y feasible.	🛛 No	ieve the noise reduc
achieve at least a	5 dBA reduction for it to be acousticall any of the following issues limit the abil Topography Safety	y feasible. ity of the abatement Yes	<u> </u>	ieve the noise reduc
achieve at least a	5 dBA reduction for it to be acousticall any of the following issues limit the abil Topography	y feasible. ity of the abatement Yes Yes	× No × No	ieve the noise reduc
achieve at least a	5 dBA reduction for it to be acousticall any of the following issues limit the abil Topography Safety Drainage	y feasible. ity of the abatement Yes Yes Yes Yes	X No No No	ieve the noise reduc
achieve at least a	5 dBA reduction for it to be acousticall any of the following issues limit the abil Topography Safety Drainage Utilities	y feasible. ity of the abatement Yes Yes Yes Yes Yes	No No No No	ieve the noise reduc
achieve at least a	5 dBA reduction for it to be acousticall any of the following issues limit the abil Topography Safety Drainage Utilities Maintenance	y feasible. ity of the abatement Yes Yes Yes Yes Yes Yes	No No No No No	ieve the noise reduc

Reasonableness

#1: Noise Reduction Design Goal	
Number of Benefited Receivers 3	Number of Benefited Receivers that achieve at least an 8 dBA reduction
Percentage of Benefited Receivers in the first two building rows th the proposed noise abatement measure. NOTE: SCDOT Policy in first two building rows must achieve at least a 8 dBA reduction for	ndicates that 80% of the benefited receivers in the 67 r it to be reasonable.
Does the proposed noise abatement measure meet the noise reduction If "Yes" is marked, continue to #2. If "No" is marked	on design goal? Yes No
#2: Cost Effectiveness	
Estimated cost per square foot for noise abatement measure	Estimated construction cost for noise abatement measure
Estimated cost per Benefited Receiver	
Based on the SCDOT policy of \$30,000 per Benefited Receiver, we NOTE: SCDOT Policy states that the preliminary noise analysis is based of specific construction cost should be applied at a cost per square foot basis	on \$35.00 per square foot and a more project- 🛄 Yes 🛄 No
If "Yes" is marked, continue to #3. If "No" is mark	ed, then abatement is determined NOT to be reasonable.
#3: Viewpoints of the property owners and residents of	the benefitted receivers
Number of Benefited Receivers (same as above)	
Number of Benefited Receivers in support of noise abatement measure	Percentage of Benefited Receivers in support of noise abatement measure
Number of Benefited Receivers opposed to noise abatement measure	Percentage of Benefited Receivers opposed to noise abatement measure
Number of Benefited Receivers that did not respond to solicitation on noise abatement measure	Percentage of Benefited Receivers that did not respond to solicitation on noise abatement measure
Based on the viewpoints of the property owners and residents of th abatement measure be reasonable? NOTE: SCDOT Policy indicat constructed unless greater than 50% of the benefited receptors are o	tes that the noise abatement shall be 🔲 Yes 🔲 No
Final Determination for Noise Abatement Measure Feasible, but not reasonable.	

.

Date: June 2019

Highway Traffic Noise Abatement Measure	Barrier 3 - Receiver 6	3 & 65	
Feasibility			
Number of Impacted Receivers 2	Number of E	Senefited Receivers	2
Percentage of Impacted Receivers that would achi noise abatement measure	eve a 5 dBA reduction fro	om the proposed	100
Is the proposed noise abatement measure acoustica NOTE:SCDOT Policy indicates that 75% of the in achieve at least a 5 dBA reduction for it to be acou	pacted receivers must	🛛 Yes	🗌 No
Would any of the following issues limit the	ne ability of the abatement	t measure to achieve	the noise redu
Topography	Yes	× No	
Safety	Yes	No No	
Drainage	Yes	No No	
Utilities	Yes	🛛 No	
Maintenance	Yes	🛛 No	
Access	🔲 Yes	🗵 No	
Exposed Height of Wal	I Yes	🛛 No	
If "Yes" was marked for	any of the questions a	above, please exp	lain below.
scription			

Reasonableness

#1: Noise Reduction Design Goal	
Number of Benefited Receivers 2	Number of Benefited Receivers that achieve at least an 8 dBA reduction
Percentage of Benefited Receivers in the first two building row the proposed noise abatement measure. NOTE: SCDOT Poli first two building rows must achieve at least a 8 dBA reduction	cy indicates that 80% of the benefited receivers in the 0 n for it to be reasonable.
Does the proposed noise abatement measure meet the noise red If "Ves" is marked continue to #2 If "No" is t	duction design goal? Yes No
ly les is marked, continue to #2. ly NO is h	na keu, men ubalement is delerminen NOT 10 de reusbrudte.
#2: Cost Effectiveness	
Estimated cost per square foot for noise abatement measure	Estimated construction cost for noise abatement measure
Estimated cost per Benefited Receiver	
Based on the SCDOT policy of \$30,000 per Benefited Receive NOTE: SCDOT Policy states that the preliminary noise analysis is be specific construction cost should be applied at a cost per square foot be	ased on \$35.00 per square foot and a more project- Ves No
If "Yes" is marked, continue to #3. If "No" is r	marked, then abatement is determined NOT to be reasonable.
#3: Viewpoints of the property owners and residents	s of the benefitted receivers
Number of Benefited Receivers (same as above)	
Number of Benefited Receivers in support of noise abatement measure	Percentage of Benefited Receivers in support of noise abatement measure
Number of Benefited Receivers opposed to noise abatement measure	Percentage of Benefited Receivers opposed to noise abatement measure
Number of Benefited Receivers that did not respond to solicitation on noise abatement measure	Percentage of Benefited Receivers that did not respond to solicitation on noise abatement measure
Based on the viewpoints of the property owners and residents abatement measure be reasonable? NOTE: SCDOT Policy in constructed unless greater than 50% of the benefited receptors	idicates that the noise abatement shall be 🔲 Yes 🛄 No
Final Determination for Noise Abatement Measure	
Feasible, but not reasonable.	

Date: June 2019

Highway Troff	ic Noise Abatement Measure Barrie	er 4 - Receiver 64	1	
ruguway 1 ran	IC Noise Adatement Measure	r 4 - Receiver of	+	
<u>Feasibility</u>				
Number of Impa	acted Receivers	Number of E	enefited Receivers	1
Percentage of In noise abatement	npacted Receivers that would achieve a measure	5 dBA reduction fro	om the proposed	100
	noise abatement measure acoustically fea Policy indicates that 75% of the impacte		🗵 Yes	🗆 No
	5 dBA reduction for it to be acoustical			
achieve at least a	• •	y feasible.	t measure to achieve	the noise reduc
achieve at least a	5 dBA reduction for it to be acousticall	y feasible.	t measure to achieve	the noise reduc
achieve at least a	a 5 dBA reduction for it to be acousticall any of the following issues limit the abil	y feasible. ity of the abatement		the noise reduc
achieve at least a	a 5 dBA reduction for it to be acousticall any of the following issues limit the abil Topography	y feasible. ity of the abatement Yes	× No	the noise reduc
achieve at least a	a 5 dBA reduction for it to be acousticall any of the following issues limit the abil Topography Safety	y feasible. ity of the abatement Yes Yes	No No	the noise reduc
achieve at least a	a 5 dBA reduction for it to be acousticall any of the following issues limit the abil Topography Safety Drainage	y feasible. ity of the abatement Yes Yes Yes Yes	No No No	the noise reduc
achieve at least a	a 5 dBA reduction for it to be acousticall any of the following issues limit the abil Topography Safety Drainage Utilities	y feasible. ity of the abatement Yes Yes Yes Yes Yes	No No No No	the noise reduc
achieve at least a	a 5 dBA reduction for it to be acousticall any of the following issues limit the abil Topography Safety Drainage Utilities Maintenance	y feasible. ity of the abatement Yes Yes Yes Yes Yes Yes	No No No No No No	the noise reduc

Reasonableness

According to 23 CFR 772.13(d)(2)(iv) the abatement measure must collectively achieve each of these criteria to be reasonable. Therefore if any of the three mandatory reasonable factors are not achieved, then the abatement measure is determined NOT to be reasonable. When completing the form it is not necessary to detail each of the criteria if one was determined not to be reasonable.

Page 1 of 2

#1: Noise Reduction Design Goal	
Number of Benefited Receivers 1	Number of Benefited Receivers that achieve at least an 8 dBA reduction
Percentage of Benefited Receivers in the first two building rows the proposed noise abatement measure. NOTE: SCDOT Policy first two building rows must achieve at least a 8 dBA reduction to	indicates that 80% of the benefited receivers in the 0
Does the proposed noise abatement measure meet the noise reduce If "Yes" is marked, continue to #2. If "No" is marked, continue to #2.	ction design goal? Yes No
#2: Cost Effectiveness	
Estimated cost per square foot for noise abatement measure	Estimated construction cost for noise abatement measure
Estimated cost per Benefited Receiver	
Based on the SCDOT policy of \$30,000 per Benefited Receiver, NOTE: SCDOT Policy states that the preliminary noise analysis is base specific construction cost should be applied at a cost per square foot bas	ed on \$35.00 per square foot and a more project- 🛄 Yes 🛄 No
If "Yes" is marked, continue to #3. If "No" is ma	rked, then abatement is determined NOT to be reasonable.
#3: Viewpoints of the property owners and residents o	of the benefitted receivers
Number of Benefited Receivers (same as above)	
Number of Benefited Receivers in support of noise abatement measure	Percentage of Benefited Receivers in support of noise abatement measure
Number of Benefited Receivers opposed to noise abatement measure	Percentage of Benefited Receivers opposed to noise abatement measure
Number of Benefited Receivers that did not respond to solicitation on noise abatement measure	Percentage of Benefited Receivers that did not respond to solicitation on noise abatement measure
Based on the viewpoints of the property owners and residents of abatement measure be reasonable? NOTE: SCDOT Policy indic constructed unless greater than 50% of the benefited receptors ar	cates that the noise abatement shall be 🛛 Yes 🔲 No
Final Determination for Noise Abatement Measure Feasible, but not reasonable.	

Date: June 2019

Project Name I-26 Widening MM 187 - 194 Be	rkeley County		
Highway Traffic Noise Abatement Measure Barrie	er 5 - Receiver 8	0	
Feasibility			
Number of Impacted Receivers 1	Number of I	Benefited Receivers	1
Percentage of Impacted Receivers that would achieve a noise abatement measure	5 dBA reduction fr	om the proposed	100
Is the proposed noise abatement measure acoustically fea NOTE:SCDOT Policy indicates that 75% of the impacte achieve at least a 5 dBA reduction for it to be acousticall Would any of the following issues limit the abil	d receivers must y feasible.	Yes Yes	No No
Topography Safety	Yes Yes	× No	
Drainage	Yes		
Utilities	Yes	× No	
Maintenance	Yes	× No	
Access	Yes	🛛 _{No}	
Exposed Height of Wall	Yes	🛛 No	
If "Yes" was marked for any	of the questions	above, please exp	lain below.
Detailed Description			

Reasonableness

#1: Noise Reduction Design Goal	
Number of Benefited Receivers 1	Number of Benefited Receivers that achieve at least an 8 dBA reduction
Percentage of Benefited Receivers in the first two building rows to the proposed noise abatement measure. NOTE: SCDOT Policy i first two building rows must achieve at least a 8 dBA reduction for	ndicates that 80% of the benefited receivers in the 0 or it to be reasonable.
Does the proposed noise abatement measure meet the noise reduct If "Yes" is marked, continue to #2. If "No" is mark	ion design goal? Yes No
#2: Cost Effectiveness	
Estimated cost per square foot for noise abatement measure	Estimated construction cost for noise abatement measure
Estimated cost per Benefited Receiver	
Based on the SCDOT policy of \$30,000 per Benefited Receiver, w NOTE: SCDOT Policy states that the preliminary noise analysis is based specific construction cost should be applied at a cost per square foot basis	on \$35.00 per square foot and a more project- during the detailed noise abatement evaluation.
If "Yes" is marked, continue to #3. If "No" is mark	ked, then abatement is determined NOT to be reasonable.
#3: Viewpoints of the property owners and residents of Number of Benefited Receivers (same as above)	the benefitted receivers
Number of Benefited Receivers in support of noise abatement measure	Percentage of Benefited Receivers in support of noise abatement measure
Number of Benefited Receivers opposed to noise abatement measure	Percentage of Benefited Receivers opposed to noise abatement measure
Number of Benefited Receivers that did not respond to solicitation on noise abatement measure	Percentage of Benefited Receivers that did not respond to solicitation on noise abatement measure
Based on the viewpoints of the property owners and residents of the abatement measure be reasonable? NOTE: SCDOT Policy indicated constructed unless greater than 50% of the benefited receptors are	ates that the noise abatement shall be 🔲 Yes 🔲 No
Final Determination for Noise Abatement Measure Feasible, but not reasonable.	

Date: June 2019

ingnway i raific	Noise Abatement Measure Barrie	er 6 - Receiver 8	1-83	
<u>Feasibility</u>				
Number of Impac	ted Receivers 3	Number of H	Benefited Receivers	3
Percentage of Imp noise abatement n	pacted Receivers that would achieve a neasure	5 dBA reduction fro	om the proposed	100
	ise abatement measure acoustically fea licy indicates that 75% of the impacte		🗵 Yes	🔲 No
achieve at least a 5	dBA reduction for it to be acousticall	y feasible.		
achieve at least a 5	i dBA reduction for it to be acousticall by of the following issues limit the abil	y feasible.	p-second particular second sec	the noise reduc
achieve at least a 5	i dBA reduction for it to be acousticall by of the following issues limit the abil Topography	y feasible. ity of the abatemen	× No	the noise reduc
achieve at least a 5	i dBA reduction for it to be acousticall by of the following issues limit the abil Topography Safety	y feasible. ity of the abatemen Yes Yes	No No	the noise reduce
achieve at least a 5	i dBA reduction for it to be acousticall by of the following issues limit the abil Topography Safety Drainage	y feasible. ity of the abatemen	No No	the noise reduce
achieve at least a 5	i dBA reduction for it to be acousticall by of the following issues limit the abil Topography Safety Drainage Utilities	y feasible. ity of the abatemen Yes Yes Yes Yes Yes	No No No No	the noise reduc
achieve at least a 5	i dBA reduction for it to be acousticall by of the following issues limit the abil Topography Safety Drainage Utilities Maintenance	y feasible. ity of the abatemen Yes Yes Yes Yes Yes Yes Yes	 No No No No No No 	the noise reduc
achieve at least a 5	i dBA reduction for it to be acousticall by of the following issues limit the abil Topography Safety Drainage Utilities	y feasible. ity of the abatemen Yes Yes Yes Yes Yes	 No No No No No No 	the noise redu

Reasonableness

According to 23 CFR 772.13(d)(2)(iv) the abatement measure must collectively achieve each of these criteria to be reasonable. Therefore if any of the three mandatory reasonable factors are not achieved, then the abatement measure is determined NOT to be reasonable. When completing the form it is not necessary to detail each of the criteria if one was determined not to be reasonable.

Page 1 of 2

#1: Noise Reduction Design Goal	
Number of Benefited Receivers 3	Number of Benefited Receivers that achieve at least an 8 dBA reduction
Percentage of Benefited Receivers in the first two building rows the proposed noise abatement measure. NOTE: SCDOT Policy first two building rows must achieve at least a 8 dBA reduction	indicates that 80% of the benefited receivers in the 100
Does the proposed noise abatement measure meet the noise redu If "Yes" is marked, continue to #2. If "No" is ma	ction design goal? 🖄 Yes 🔲 No
#2: Cost Effectiveness	
Estimated cost per square foot for noise abatement measure	Estimated construction cost for noise abatement measure 976,920
Estimated cost per Benefited Receiver 325,640	
Based on the SCDOT policy of \$30,000 per Benefited Receiver, NOTE: SCDOT Policy states that the preliminary noise analysis is base specific construction cost should be applied at a cost per square foot base	ed on \$35.00 per square foot and a more project- Ves 🖄 No sis during the detailed noise abatement evaluation.
If "Yes" is marked, continue to #3. If "No" is ma	arked, then abatement is determined NOT to be reasonable.
#3: Viewpoints of the property owners and residents of	of the benefitted receivers
Number of Benefited Receivers (same as above)	
Number of Benefited Receivers in support of noise abatement measure	Percentage of Benefited Receivers in support of noise abatement measure
Number of Benefited Receivers opposed to noise abatement measure	Percentage of Benefited Receivers opposed to noise abatement measure
Number of Benefited Receivers that did not respond to solicitation on noise abatement measure	Percentage of Benefited Receivers that did not respond to solicitation on noise abatement measure
Based on the viewpoints of the property owners and residents of abatement measure be reasonable? NOTE: SCDOT Policy indi constructed unless greater than 50% of the benefited receptors a	cates that the noise abatement shall be Ves No
Final Determination for Noise Abatement Measure Feasible, but not reasonable.	

Date: June 2019

Highway Traffic Noise Abatement Measure Barrie	r 7 - Receiver 84	4-85	
Feasibility			
Number of Impacted Receivers 2	Number of B	enefited Recei	vers 2
Percentage of Impacted Receivers that would achieve a the statement measure	6 dBA reduction fro	om the propose	d 100
s the proposed noise abatement measure acoustically fea NOTE:SCDOT Policy indicates that 75% of the impacted achieve at least a 5 dBA reduction for it to be acoustically	l receivers must	🛛 Yes	No No
Would any of the following issues limit the abili	ty of the abatement	t measure to ac	hieve the noise reduc
Topography	Yes	🗵 No	
Safety	Yes	× No	
Drainage	Yes	🛛 No	
Utilities	Yes	🛛 No	
Maintenance	Yes	🗵 No	
Access	Yes	🛛 No	
Europed Match of Wall	Yes	No No	
Exposed Height of Wall			

<u>Reasonableness</u>

According to 23 CFR 772.13(d)(2)(iv) the abatement measure must collectively achieve each of these criteria to be reasonable. Therefore if any of the three mandatory reasonable factors are not achieved, then the abatement measure is determined NOT to be reasonable. When completing the form it is not necessary to detail each of the criteria if one was determined not to be reasonable.

Page 1 of 2

#1: Noise Reduction Design Goal		
Number of Benefited Receivers 2		Number of Benefited Receivers that achieve at least an 8 dBA reduction
	NOTE: SCDOT Policy in	nat would achieve at least a 8 dBA reduction from adicates that 80% of the benefited receivers in the 100 r it to be reasonable.
Does the proposed noise abatement meas		
If "Yes" is marked, conti	nue to #2. If "No" is mark	ed, then abatement is determined NOT to be reasonable.
#2: Cost Effectiveness		
Estimated cost per square foot for noise abatement measure	35	Estimated construction cost for noise abatement measure
Estimated cost per Benefited Receiver	498,977.5	
NOTE: SCDOT Policy states that the prelim specific construction cost should be applied a	inary noise analysis is based t a cost per square foot basis	ould the abatement measure be reasonable? on \$35.00 per square foot and a more project- during the detailed noise abatement evaluation.
If "Yes" is marked, conti	nue to #3. If "No" is mark	ed, then abatement is determined NOT to be reasonable.
#3: Viewpoints of the property ow	vners and residents of	the benefitted receivers
Number of Benefited Receivers (same a	s above)	
Number of Benefited Receivers in support of noise abatement measure		Percentage of Benefited Receivers in support of noise abatement measure
Number of Benefited Receivers opposed to noise abatement measure		Percentage of Benefited Receivers opposed to noise abatement measure
Number of Benefited Receivers that die respond to solicitation on noise abatem measure		Percentage of Benefited Receivers that did not respond to solicitation on noise abatement measure
Based on the viewpoints of the property abatement measure be reasonable? NOT constructed unless greater than 50% of the	E: SCDOT Policy indicate	tes that the noise abatement shall be 🛛 Yes 🔲 No
Final Determination for Noise Abatement M Feasible, but not reasonable.	leasure	

Page	2	of	2
------	---	----	---